
Versatile Integrator for Chemical Evolution
Version 1.1.0

i

ii

CONTENTS

1 Installing VICE 3

2 Getting Started 9

3 Science Documentation 11

4 Comprehensive API Reference 31

5 Developer’s Documentation 139

iii

iv

VICE, Release 1.1.0

Version 1.1.0
James W. Johnson

Primary Author
Email: giganano9@gmail.com
The Ohio State University Department of Astronomy
140 W. 18th Ave., Columbus, OH, 43204

Welcome to VICE’s documentation! Source code and more resources can found in the git repository. To cite this
version of VICE, please reference Johnson & Weinberg (2020). Any modifications to the source code will require
rebuilding VICE from source for the change to take effect.

First-time users should familiarize themselves with VICE’s API by going through the tutorial, available in the git
repository. Any questions users may have can be emailed to the primary author (James W. Johnson).

CONTENTS 1

mailto:giganano9@gmail.com
https://github.com/giganano/VICE.git
https://arxiv.org/abs/1911.02598
https://github.com/giganano/VICE/blob/master/docs/src/install.rst
https://github.com/giganano/VICE/blob/master/examples/QuickStartTutorial.ipynb
https://github.com/giganano/VICE.git
https://github.com/giganano/VICE.git

VICE, Release 1.1.0

2 CONTENTS

CHAPTER

ONE

INSTALLING VICE

Binary installers of the latest version of VICE for python versions 3.5-3.8 on Mac OS X and Linux operating systems can
be found on PyPI. We recommend that VICE be installed in this manner by running pip install vice [--user]
from a bash terminal. Users should add the --user flag if they do not have administrator privileges; this will install
VICE to their ~/.local directory.

Designed for Unix system architectures, VICE does not function within a windows environment. Windows users should
therefore install VICE within the Windows Subsystem for Linux (WSL). An installation from source on a windows
machine should also be ran from within WSL.

Users who have or would like to modify VICE’s source code should conduct a from source installation; this also applies
to users who would like to install for a development version of python, such as 3.9. Installing from source is also an
alternative in the event that the PyPI installation fails for some reason. If you have already installed VICE and would
like help getting started, usage guidelines and tutorials can be found here.

Contents

• Installing VICE

– Dependencies

∗ A Note on Implementation

– Installing from Source

∗ Things to Avoid

∗ Additional Options

– Troubleshooting Your Build

∗ ImportError After Installation

∗ Running the setup.py File Failed

∗ Running the Tests Resulted in a Segmentation Fault

∗ VICE Isn’t Running from the Command Line

∗ Compiler Failure

– Uninstalling VICE

3

https://pypi.org/project/vice/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://pypi.org/project/vice/
https://github.com/giganano/VICE/blob/master/docs/src/getting_started.rst

VICE, Release 1.1.0

1.1 Dependencies

VICE has no primary runtime dependencies; that is, it does not require any external software to run properly. There
are however a handful of features which are enabled when certain dependencies are satisfied, and we recommend users
install them to make use of VICE to its full extent. These secondary dependencies are as follows:

1. dill >= 0.2.0 dill allows VICE to save python functions with its output. This makes it possible to reconstruct
simulations from their output.

2. matplotlib >= 2.0.0 matplotlib is necessary for the show function of the output object. This is intended to allow
users to visually inspect the results of their simulations in ipython, a jupyter notebook, or something
similar without having to plot it themselves. This is included purely for convenience, and is not intended
to produce publication-quality figures.

3. NumPy VICE’s tutorial and example code often make use of NumPy, but the user does not need NumPy to use
VICE.

1.1.1 A Note on Implementation

VICE is implemented in ANSI/ISO C and is wrapped using only standard library Python and Cython. It is thus inde-
pendent of the user’s version of Anaconda (or lackthereof). It is numpy- and pandas-compatible, but neither numpy-
nor pandas-dependent. That is, it will recognized user input from both numpy and pandas data types such as the numpy
array or the pandas dataframe, but is designed to run independently of them.

1.2 Installing from Source

While VICE does not have any primary runtime dependencies, there are several compile-time dependencies that must
be satisfied to install from source. They are as follows:

1. Cython >= 0.28.0

2. Python >= 3.5

3. Make >= 3.81

4. gcc >= 4.6 or clang >= 3.6.0

On Mac OS X and Linux architectures, it is likely that Make and one of gcc or clang come pre-installed. Users may
install with alternative C compilers if they so choose, but VICE is tested with only gcc and clang.

Once the build dependencies are satisfied, download the source code using a terminal and change directories into the
source tree:

$ git clone https://github.com/giganano/VICE.git
$ cd VICE

To install VICE, then run:

$ make
$ python setup.py build -j 4 install

This will compile VICE on 4 CPUs in parallel and subsequently install. Users installing VICE on a system on which
they do not have adminstrator’s privileges should perform a local installation. This can be achieved with the --user
command-line argument:

4 Chapter 1. Installing VICE

https://pypi.org/project/dill/
https://pypi.org/project/dill/
https://pypi.org/project/matplotlib/
https://pypi.org/project/matplotlib/
https://pypi.org/project/numpy/
https://github.com/giganano/VICE/blob/master/examples/QuickStartTutorial.ipynb
https://pypi.org/project/numpy/
https://pypi.org/project/numpy/
https://www.python.org/downloads/
https://pypi.org/project/Cython/
https://www.anaconda.com/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/numpy/
https://pypi.org/project/pandas/
https://pypi.org/project/Cython/
https://www.python.org/downloads/
https://www.gnu.org/software/make/
https://gcc.gnu.org/
https://clang.llvm.org/get_started.html
https://www.gnu.org/software/make/
https://gcc.gnu.org/
https://clang.llvm.org/get_started.html
https://gcc.gnu.org/
https://clang.llvm.org/get_started.html

VICE, Release 1.1.0

$ python setup.py build -j 4 install --user

Please note that users installing VICE to multiple versions of python will likely have to run make clean between runs
of the setup.py file. Following the installation, to run the tests and clean the source tree:

$ make tests
$ make clean

Please also note that make tests runs VICE’s tests in the user’s default version of python. To force the tests to run in
python 3, run make tests3. Alternatively, the tests can be ran from within python itself:

import vice
vice.test()

If you have issues installing or running VICE, please see the section on Troubleshooting Your Build. If your installation
was successful and you would like help getting started, usage guidelines can be found here.

1.2.1 Things to Avoid

1. conda Environments VICE should never be installed from source within a conda environment. This only ap-
plies to from source installations; a binary installation from PyPI should run properly within any conda
environment provided the version of python is supported. When installing from source in a conda envi-
ronment, the installation process will run without errors, but the compiled extensions are not placed in the
correct directory, preventing VICE from running properly. This does not apply to the default environment
base associated with later versions of python and Anaconda.

VICE will run within whatever conda environments users create; it is only the source installation process
that this applies to. As noted here, VICE is implemented entirely independently of Anaconda, and for this
reason, it does not make sense to install VICE from source in a conda environment anyway. This is also
true for installing from PyPI in a conda environment, unless a specific version of python is required.

2. Parallel Installations Users installing VICE to multiple versions of python should not run the setup.py file in
separate terminals simultaneously; this will cause one of the builds to fail. Likewise, users should not run
the tests for multiple versions of python simultaneously; it’s likely this will caues a segmentation fault.

1.2.2 Additional Options

By default, VICE will install verbosely, printing to the console. To turn this off, run a quiet installation:

$ python setup.py build -j 4 install -q

or

$ python setup.py build -j 4 install --quiet

To change the number of cores used to compile VICE:

$ python setup.py build -j <number of cores> install

If you have modified VICE’s source code and are reinstalling your modified version, there’s no need to rebuild the
entire package. Any number of extensions can be specified with the ext directive. For example, the following will
rebuild the singlezone object, whose extension is vice.core.singlezone._singlezone:

1.2. Installing from Source 5

https://github.com/giganano/VICE/blob/master/docs/src/getting_started.rst
https://pypi.org/project/vice/
https://www.anaconda.com/
https://www.anaconda.com/
https://pypi.org/project/vice/

VICE, Release 1.1.0

$ python setup.py build install ext=vice.core.singlezone._singlezone

1.3 Troubleshooting Your Build

The following are a number of issues that can arise when installing VICE from source. If none of these op-
tions solve your problem, you may open an issue here, or email VICE’s primary author (James W. Johnson) at gi-
ganano9@gmail.com.

1.3.1 ImportError After Installation

Did you install VICE from within a conda environment? If not, please open an issue here.

1.3.2 Running the setup.py File Failed

Did you run it for multiple versions of python simultaneously? If not, please open an issue here.

1.3.3 Running the Tests Resulted in a Segmentation Fault

Did you run the tests for multiple versions of python simultaneously? If not, please open an issue here.

1.3.4 VICE Isn’t Running from the Command Line

In this case, it is likely that the required files were copied somewhere that is not on your PATH. If re-installing VICE
does not solve the problem, these files can simply be copied to a given directory. For example:

$ cp ./bin/* ~/.local/bin/

Will place both command line entries in the ~/.local/bin/ directory. This can be permanently added to your path
by adding

export PATH=$HOME/.local/bin:$PATH

to ~/.bash_profile. This will require source ~/.bash_profile to be ran from the terminal before vice can be
ran from the command line.

Note: If you have installed VICE with the --user option, it is likely that VICE has automatically modified your PATH,
and that source ~/.bash_profile is all that needs ran.

More information on modifying your PATH can be found here.

If this does not fix the issue, please open an issue here.

6 Chapter 1. Installing VICE

https://github.com/giganano/VICE/issues
mailto:giganano9@gmail.com
mailto:giganano9@gmail.com
https://github.com/giganano/VICE/issues
https://github.com/giganano/VICE/issues
https://github.com/giganano/VICE/issues
https://unix.stackexchange.com/questions/26047/how-to-correctly-add-a-path-to-path
https://github.com/giganano/VICE/issues

VICE, Release 1.1.0

1.3.5 Compiler Failure

This is usually an indication that the build should not be ran on multiple cores. First run make clean, and subsequently
make. Then replace your previous command to run the setup.py file with:

$ python setup.py build install [--user] [--quiet]

If you were not installing VICE on multiple cores to begin with, try installing without the build directive:

$ python setup.py install [--user] [--quiet]

If neither of these recommendations fixed your problem, please open an issue here.

1.4 Uninstalling VICE

If you have installed VICE from PyPI, it can be uninstalled from the terminal via pip uninstall vice. When
prompted, simply confirm that you would like the files removed.

If you have installed from source, uninstalling requires a couple of steps. First, you must find the path to the directory
that it was installed to. This can be done by launching python and running the following two lines:

import vice
print(vice.__path__)

Note that there are four underscores in total: two each before and after path. This will print a single-element list
containing a string denoting the name of the directory holding VICE’s compiled extensions, of the format /path/to/
install/dir/vice. Change into this directory, and remove the VICE tree:

$ cd /path/to/install/dir/
$ rm -rf vice/

Then, check the remaining contents for an egg. This will likely be of the format vice-<version number>.
egg-info. Remove this directory as well:

$ rm -rf vice-<version number>.egg-info

Finally, the command line entry must be removed. The full path to this script can be found with the which command
in the terminal:

$ which vice

This will print the full path in the format /path/to/cmdline/entry/vice. Pass it to the rm command as well:

$ rm -f /path/to/cmdline/entry/vice

If this process completed without any errors, then VICE was successfully uninstalled. To double-check, rerunning
which vice should now print nothing.

1.4. Uninstalling VICE 7

https://github.com/giganano/VICE/issues
https://pypi.org/project/vice/

VICE, Release 1.1.0

8 Chapter 1. Installing VICE

CHAPTER

TWO

GETTING STARTED

Any questions regarding usage of VICE or its implementation can be directed to the primary author (James W. Johnson:
giganano9@gmail.com).

2.1 Tutorial

Under examples in VICE’s source directory is the quick start tutorial, a notebook intended to provide first-time users
with a primar on how to use all of VICE’s features. After installation, this jupyter notebook can be viewed in the
web browser by running vice --tutorial from the command line. Alternatively, if installing from source, it can be
launched via make tutorial in the root directory. To download this jupyter notebook, simply clone the git repository
if you haven’t already, and it will be under the examples directory.

2.2 Example Code

We provide example scripts in VICE’s source tree under examples.

2.3 Accessing Documentation

After installing VICE, the documentation can be launched in a browser window via the vice --docs command line
entry. If this feature does not work after installing VICE, troubleshooting can be found here. Documentation can also
be found in the docstrings embedded in the code, and in the git repository.

2.4 From the Command Line

VICE allows simple simulations to be ran directly from the command line. For instructions on how to use this func-
tionality, run vice --help in a terminal from any directory (with the exception of VICE’s source directory).

If this feature does not work after installing VICE, troubleshooting can be found here.

Note: VICE’s functionality is severely limited when ran from the command line in comparison to its full Python
capabilities.

9

mailto:giganano9@gmail.com
https://github.com/giganano/VICE/blob/master/examples/QuickStartTutorial.ipynb
https://github.com/giganano/VICE/tree/master/examples
https://github.com/giganano/VICE/blob/master/docs/src/install.rst#troubleshooting-your-build
https://github.com/giganano/VICE.git
https://github.com/giganano/VICE/blob/master/docs/src/install.rst#troubleshooting-your-build
https://www.python.org/

VICE, Release 1.1.0

10 Chapter 2. Getting Started

CHAPTER

THREE

SCIENCE DOCUMENTATION

In this documentation we adopt the notation where a lower-case 𝑚 implicitly represents the mass ratio of the star to the
sun, a unitless mass measurement. When relevant, we refer to the mass of a star with units with an upper-case 𝑀 . In a
similar fashion, 𝑙 and 𝑢 refer to the lower and upper mass limits of star formation, respectively.

All nucleosynthetic yields are in fractional units; that is, they quantify the mass fraction of stellar material’s initial
mass that is processed into a given element and subsequently ejected to the ISM. Nucleosynthetic products that end up
locked in stellar remnants should not be taken into account in these models. These values are denoted with a lower-case
𝑦 with test subscripts and superscripts denoting the element and the enrichment channel.

The metallicity by mass 𝑍 refers always to the metallicity by mass:

𝑍 ≡ 𝑀𝑥

𝑀

Where 𝑀𝑥 refers to the mass of some element 𝑥 and 𝑀 to the mass of either the interstellar gas or a star.

The logarithmic abundance measurement [X/H] is defined by:

[𝑋/𝐻] ≡ log10

(︂
𝑍𝑥

𝑍⊙
𝑥

)︂
and logarithmic abundance ratios [X/Y]:

[𝑋/𝑌] = [𝑋/𝐻] − [𝑌/𝐻] = log10

(︂
𝑍𝑥

𝑍⊙
𝑥

)︂
− log10

(︂
𝑍𝑦

𝑍⊙
𝑦

)︂
Here and hereafter the symbols ⊙ and 𝜏 refer to the sun and a timescale, respectively.

3.1 Background

3.1.1 Galactic Chemical Evolution

Galactic Chemical Evolution (often referred to as galactic archaeology) studies the connection between a galaxy’s
evolution and the chemical compositions of its stars. Big Bang Nucleosynthesis produced only hydrogen, helium, and
trace amounts of lithium, the three lightest elements on the periodic table. To first order, everything else was produced
via nuclear fusion in supernovae and through various channels of stellar evolution, the yields of which are dictated by
nuclear physics. The abundances of different nuclei within stars therefore has physical information on the number of
nucleosynthetic events and thus the number of stars that came before it. For more theoretical background on galactic
archaeology, see sections 1 and 2 and the citations therein of Johnson & Weinberg (2020).

11

https://arxiv.org/abs/1911.02598

VICE, Release 1.1.0

3.1.2 The Singlezone Approximation

The singlezone approximation (also known as the onezone approximation, onezone models, box models, or variations
thereof), refers to the assumption of instantaneous diffusion of newly produced metals in interstellar gas. This as-
sumptions mandates that these nuclei be uniformly distributed at all times. By deliberately sacrificing all phase space
information, the equations of these models reduce to a system of couple integro-differential equations of mass with
time. While these equations only allow analytic solutions under further mathematical approximations, they can be
easily integrated numerically.

VICE includes features for running numerical simulations of singlezone models in the singlezone class. In this
documentation, we detail the analytic motivation and numerical approximations implemented in VICE in handling
these simulations.

3.2 Implementation

3.2.1 Motivation

VICE is designed in such a manner that as few assumptions as possible are made by the software itself. In this manner,
the power the user has over the parameters of their simulations is maximized. With this motivation, any quantities that
may vary are allowed to do so under user-constructed functions in Python. The only assumption VICE’s model adopts
is physical plausibility.

3.2.2 Numerical Approach

Because VICE is built to handle singlezone simulations, numerics are not the dominant source of error, but rather in
the model itself. The assumption of instantaneous diffusion of newly produced metals introduces an error that which
is larger than even modest numerical errors to the equations presented in this documentation.

For this reason, VICE is implemented with a Forward Euler timestep solution, and its errors are not dominated by
numerics. Furthermore, quantization of the timesteps allows the quantization of the episodes of star formation with no
further assumptions. At several instances in this documentation, this will simplify the equations considerably. Adopting
a user-specified timestep size, this also makes it the computationally cheapest solution by not introducing intermediate
timesteps. In this manner, VICE is able to achieve a high degree of generality while retaining powerful computing
speeds.

3.2.3 Minimization of Dependencies

VICE is implemented in its entirety in ANSI/ISO C, standard library Python, and standard library Cython. With this
implementation, VICE is entirely cross platform and independent of the user’s version of Anaconda (or lackthereof).
However, VICE is not wrapped for installation in a Windows environment without modifying the installation source
code. We recommend users install and run VICE in a linux environment using the Windows Terminal.

12 Chapter 3. Science Documentation

https://www.python.org/
https://www.python.org/
https://cython.org/
https://www.anaconda.com/
https://www.microsoft.com/en-us/p/windows-terminal-preview/9n0dx20hk701?activetab=pivot:overviewtab

VICE, Release 1.1.0

3.2.4 Timed Runs

Due to the Forward Euler implementation and the requirement to calculate enrichment from previous episodes of star
formation, we expect the integration time to scale with the square of the number of timesteps (i.e. 𝑇 ∝ (𝑇end/∆𝑡)2).
VICE also treats each element independently and equally; the equations of enrichment are evaluated for an arbitrary
element 𝑥. The integration time should thus scale linearly with the number of elements 𝑁 .

Because VICE was implemented with the scientific motivation of studying the enrichment of oxygen, iron, and stron-
tium under starburst evolutionary scenarios (Johnson & Weinberg 20201), the first integrations were ran with these
three elements. With timesteps of ∆𝑡 = 1 Myr, each simulation finished in 20.4 seconds on a system with a processing
speed of 2.7 GHz. With these proportionalities and this calibration, we expect the following scaling relation to describe
the time per integration of the singlezone object as a function of the number of elements 𝑁 , the end time 𝑇end, and
the timestep size ∆𝑡:

𝑇 =

(︂
Processor Speed

2.7 GHz

)︂−1(︂
𝑇end/∆𝑡

104

)︂2

𝑁(6.8 seconds)

Because 1 Myr is a relatively fine timestep, most integrations will typically not take this long. The default timestep
size of 10 Myr is expected to finish in 68 milliseconds per element.

Here we plot the integration time for 5, 10, 15, 20, and 25 elements with timesteps ranging from 500 kyr to 10 Myr
in comparison to the expected scaling relation. For small ∆𝑡, the scaling relation describes the integration time with
sufficient accuracy, although slightly underpredicts the integration time when the number of elements is large. This
also underpredicts the integration time for coarse timestepping; this is because this scaling relation does not take into
account write-out time. For large ∆𝑡, the singlezone object is not algorithm limited but write-out limited. Write out
time may also be a potential reason that the integration time is mildly underpredicted for small ∆𝑡 and high 𝑁 .

3.3 Single Stellar Populations

As discussed in our section on implementation, VICE’s simulations are implemented with a Forward Euler timestep
solution, an approximation made possible by numerics not being the dominant source of error. The quantization of
timesteps necessitates the quantization of the episodes of star formation. This allows VICE to model enrichment in
singlezone models by using summations over a sample of discretized stellar populations.

For this reason, we implement a treatment of two quantities particularly useful in the mass evolution of single stellar
populations: the cumulative return fraction (CRF) and the main sequence mass fraction (MSMF). The CRF represents
the fraction of a single stellar population’s mass that is returned to the interstellar medium as gas. The MSMF is the
fraction of its mass that is still in the form of main sequence stars. These quantities are of particular use in calculating
the rate of mass recycling and the rate of enrichment from asymptotic giant branch stars.

3.3.1 Stellar Lifetimes

In VICE we adopt the following functional form for the lifetime of a star on the main sequence:

𝜏MS = 𝜏⊙𝑚
−𝛼

where 𝜏⊙ is the sun’s main sequence lifetime, 𝛼 is the power-law index of the mass-lifetime relationship. The constant
SOLAR_LIFETIME declares 𝜏⊙ = 10 Gyr, and MASS_LIFETIME_PLAW_INDEX delcares 𝛼 = 3.5. Both constants are
declared in vice/src/ssp.h.

The scaling of 𝜏MS ∼ 𝑚−3.5 fails for high mass stars (& 8𝑀⊙), but these stars have lifetimes that are very short
compared to the relevant timescales of galactic chemical evolution (∼few` Gyr). This approximation fails for low

1 Johnson & Weinberg (2020), arxiv:1911.02598

3.3. Single Stellar Populations 13

VICE, Release 1.1.0

Fig. 1: Timed runs with 𝑁 = 5, 10, 15, 20, and 25 elements with timesteps ranging from 500 kyr to 10 Myr (solid lines)
with an ending time of 𝑇end = 10 Gyr. The color-coded dotted lines show the 𝑁∆𝑡−2 expected scaling relation. The
fit does well for small ∆𝑡, but underpredicts the integration time for coarse timestepping; this is due to the transition
from an algorithm limited simulation to a write out limited simulation. The scaling relation also slightly underpredicts
the integration time for high N simulations.

14 Chapter 3. Science Documentation

VICE, Release 1.1.0

mass stars as well (. 0.5𝑀⊙), but these stars have very long lifetimes that are considerably longer than the age of the
universe. Because VICE does not support simulations on this long of timescales, this approximation suffices for all
timescales of interest.

This is motivated by a conventional power-law relationship between mass and luminosity 𝐿 ∼ 𝑀+𝛽 . The lifetime then
scales as 𝜏 ∼ 𝑀/𝐿 ∼ 𝑀1−𝛽 . 𝛼 = 3.5 corresponds to 𝐿 ∼ 𝑀4.5 in the mass range of interest.

This equation can be generalized to find the the total lifetime of a star of mass 𝑚: the time until it produces a remnant
by simply amplifying the lifetime by a factor 1 + 𝑝MS:

𝜏total = (1 + 𝑝MS)𝜏⊙𝑚
−𝛼

where 𝑝MS is an adopted lifetime ratio of the post main sequence to main sequence phases of stellar evolution.

By interpreting 𝜏total as lookback time, we can solve for the mass of remnant producing stars under this model.

𝑚postMS =

(︂
𝑡

(1 + 𝑝MS)𝜏⊙

)︂−1/𝛼

This equation allows the solution of both the main sequence turnoff mass and the mass of stars at the end of their post
main sequence lifetimes by whether or not 𝑝MS = 0.

Relevant source code:

• vice/src/ssp.h

• vice/src/ssp/mlr.c

3.3.2 The Cumulative Return Fraction

The cumulative return fraction is defined as the mass fraction of a single stellar population that is returned back to the
interstellar medium (ISM) as gas. When dying stars produce their remnants, whatever material that does not end up in
the remnant is returned to the ISM. This quantity can be calculated from an initial-final mass relation and an adopted
stellar initial mass function (IMF). In short, the cumulative return fraction can be stated mathematically as “ejected
material from dead stars in units of total initial amount of material.” Its analytic form is therefore given by:

𝑟(𝑡) =

∫︁ 𝑢

𝑚to(𝑡)

(𝑚−𝑚rem)
𝑑𝑁

𝑑𝑚
𝑑𝑚

[︂∫︁ 𝑢

𝑙

𝑀
𝑑𝑁

𝑑𝑚
𝑑𝑚

]︂−1

The current version of VICE employs the initial-final remnant mass relation of Kalirai et al. (2008)1:

𝑚rem(𝑚) =

{︃
1.44 (𝑚 ≥ 8)

0.394 + 0.109𝑚 (𝑚 < 8)

For a power-law IMF 𝑑𝑁/𝑑𝑚 ∼ 𝑚−𝛼, the numerator of 𝑟(𝑡) is thus given by:∫︁ 𝑢

𝑚to(𝑡)

(𝑚−𝑚rem(𝑚))
𝑑𝑁

𝑑𝑚
𝑑𝑚 =

1

2 − 𝛼
𝑚2−𝛼

⃒⃒⃒⃒
⃒
𝑢

𝑚to(𝑡)

− 1.44

1 − 𝛼
𝑚1−𝛼

⃒⃒⃒⃒
⃒
𝑢

𝑚to(𝑡)

for 𝑚to(𝑡) ≥ 8, and∫︁ 𝑢

𝑚to(𝑡)

(𝑚−𝑚rem(𝑚))
𝑑𝑁

𝑑𝑚
𝑑𝑚 =

1.44

1 − 𝛼
𝑚1−𝛼

⃒⃒⃒⃒
⃒
𝑢

8

+

[︂
0.394

1 − 𝛼
𝑚1−𝛼 +

0.109

2 − 𝛼
𝑚2−𝛼

]︂8
𝑚to(𝑡)

1 Kalirai et al. (2008), ApJ, 676, 594

3.3. Single Stellar Populations 15

VICE, Release 1.1.0

for 𝑚to(𝑡) < 8.

This solution is analytic. For piecewise IMFs, this becomes a summation over the relevant mass ranges of the IMF, and
each term has the exact same form. The normalization of the IMF is irrelvant here, because the same normalization
will appear in the denominator.

The denominator has a simpler analytic form:∫︁ 𝑢

𝑙

𝑚
𝑑𝑁

𝑑𝑚
𝑑𝑚 =

1

2 − 𝛼
𝑚2−𝛼

⃒⃒⃒⃒
⃒
𝑢

𝑙

Here we plot 𝑟 as a function of the stellar population’s age. Weinberg, Andrews, and Freudenburg (2017)2 adopted in-
stantaneous recycling, whereby a fraction of the stellar population’s mass 𝑟inst is returned instantaneously in the interest
of an analytic approach to singlezone models. They find that 𝑟inst = 0.4 and 𝑟inst = 0.2 is an adequate approximation for
Kroupa3 and Salpeter4 IMFs. This reduces the more sophisticated formulation implemented here to:

𝑟(𝑡) ≈

{︃
𝑟inst (𝑡 = 0)

0 (𝑡 > 0)

In reality, the rate of mass return from a stellar population of mass 𝑀* is given by 𝑟̇𝑀*, but in implementation, the
quantization of timesteps allows each timestep to represent a single stellar population which will eject mass 𝑀*𝑑𝑟 in a
time interval 𝑑𝑡. For that reason, VICE is implemented with a calculation of 𝑟(𝑡) rather than 𝑟̇.

In simulations, VICE allows users the choice between the time-dependent formulation of 𝑟(𝑡) derived here and the
instantaneous approximation of Weinberg, Andrews, and Freudenburg (2017) by specifying a preferred value of 𝑟inst,
which allows any fraction between 0 and 1.

In calculations of 𝑟(𝑡) with the built-in Kroupa and Salpeter IMFs, the analytic solution is calculated. In the case of a
user-customized IMF, VICE solves the equation numerically using quadrature.

Note: The approximation of ℎ(𝑡) ≈ 1− 𝑟(𝑡) where ℎ is the main sequence mass fraction fails at the ∼ 5− 10% level.
See our discussion of this point here.

Relevant source code:

• vice/src/ssp/crf.c

• vice/src/yields/integral.c

3.3.3 The Main Sequence Mass Fraction

The main sequence mass fraction, as the name suggests, is the fraction of a single stellar population’s initial mass that
is still in the form of main sequence stars. Because this calculation does not concern evolved stars, neither a model for
the post main sequence lifetime nor an initial-final remnant mass relation is needed; it is thus considerably simpler than
the cumulative return fraction. This quantity is instead specified entirely by the IMF and the mass-lifetime relation.

It’s analytic form is given by:

ℎ(𝑡) =

∫︁ 𝑚to(𝑡)

𝑙

𝑚
𝑑𝑁

𝑑𝑚
𝑑𝑚

[︂∫︁ 𝑢

𝑙

𝑚
𝑑𝑁

𝑑𝑚
𝑑𝑚

]︂−1

2 Weinberg, Andrews & Freudenburg (2017), ApJ, 837, 183
3 Kroupa (2001), MNRAS, 322, 231
4 Salpeter (1955), ApJ, 121, 161
5 Kroupa (2001), MNRAS, 322, 231
6 Salpeter (1955), ApJ, 121, 161

16 Chapter 3. Science Documentation

VICE, Release 1.1.0

Fig. 2: The cumulative return fraction as a function of age for Kroupa5 (red) and Salpeter6 (blue) IMFs. The Kroupa
IMF is higher at all nonzero ages because it has fewer low mass stars than Salpeter. In both cases the post main sequence
lifetime is assumed to be 10% of the main sequence lifetime (i.e. 𝑝MS = 0.1).

3.3. Single Stellar Populations 17

VICE, Release 1.1.0

which for a power-law IMF 𝑑𝑁/𝑑𝑚 ∼ 𝑚−𝛼 becomes

ℎ(𝑡) =

⎡⎣ 1

2 − 𝛼
𝑚2−𝛼

⃒⃒⃒⃒
⃒
𝑚to(𝑡)

𝑙

⎤⎦[︃ 1

2 − 𝛼
𝑚2−𝛼

⃒⃒⃒⃒
⃒
𝑢

𝑙

]︃−1

It may be tempting to cancel the factor of 1/(2−𝛼), but more careful consideration must be taken for piece-wise IMFs
like Kroupa7:

ℎ(𝑡) =

[︃∑︁
𝑖

1

2 − 𝛼𝑖
𝑚2−𝛼𝑖

]︃𝑚to(𝑡)

𝑙

(︃[︃∑︁
𝑖

1

2 − 𝛼𝑖
𝑚2−𝛼𝑖

]︃𝑢
𝑙

)︃−1

where the summation is over the relevant mass ranges with different power-law indeces 𝛼𝑖. In the case of kroupa 𝛼 =
2.3, 1.3, and 0.3 for 𝑚 > 0.5, 0.08 ≤ 𝑚 ≤ 0.5, and 𝑚 < 0.08, respectively.

Here we plot ℎ as a function of the stellar population’s age. By 10 Gyr, ℎ(𝑡) is as low as ∼ 0.45 for the Kroupa IMF
and ∼ 0.65 for the Salpeter8 IMF. In comparison, the cumulative return fraction 𝑟(𝑡) ≈ 0.45 for the Kroupa IMF
and ∼ 0.28 for the Salpeter IMF. This suggests that the approximation ℎ(𝑡) ≈ 1 − 𝑟(𝑡) fails at the ∼ 5 − 10% level,
depending on the choice of IMF. This suggests that for old stellar populations, a non-negligible portion of the mass
is contained in evolved stars and stellar remnants. VICE therefore differentiates between these two quantities in its
implementation.

In reality, the rate of the stellar mass evolving off of the main sequence is given by ℎ̇𝑀* where 𝑀* is the initial mass of
the stellar population. However, the quantization of timesteps in VICE allows each timestep to represent a single stellar
population which will eject mass 𝑀*𝑑ℎ in a time interval 𝑑𝑡. For that reason, VICE is implemented with a calculation
of ℎ(𝑡) rather than ℎ̇.

In calculations of ℎ(𝑡) with the built-in Kroupa and Salpeter IMFs, the analytic solution is calculated. In the case of a
user-customized IMF, VICE solves the equation numerically using quadrature.

Relevant source code:

• vice/src/ssp/msmf.c

• vice/src/yields/integral.c

3.3.4 Enrichment from Single Stellar Populations

While galaxies form stars continuously, it is often an interesting scientific problem to quantify the nucleosynthetic
production of only one population of conatal stars. This is inherently cheaper computationally, since this is only one
stellar population while galaxy simulations require many stellar populations.

VICE includes functionality for simulating the mass production of a given element from a single stellar population (i.e.
an individual star cluster) of given mass and metallicity under user-specified yields. This by construction does not take
into account depletion from infall low metallicity gas and star formation, ejection in outflows, recycling, etc. It only
calculates the mass production of the element as a function of the stellar population’s age.

The star cluster is assumed to form at time 𝑡 = 0, and thus at this time there is no net production. Because VICE
operates under the assumption that all core-collapse supernovae (CCSNe) occur instantaneously following the star
cluster’s formation11, the entire CCSN net yield is injected within the first timestep at 𝑡 = ∆𝑡:

∆𝑀𝑥 = 𝑦CC
𝑥 (𝑍)𝑀⋆

7 Kroupa (2001), MNRAS, 322, 231
8 Salpeter (1955), ApJ, 121, 161
9 Kroupa (2001), MNRAS, 322, 231

10 Salpeter (1955), ApJ, 121, 161
11 See the discussion of enrichment from CCSNe for justification of this assumption.

18 Chapter 3. Science Documentation

VICE, Release 1.1.0

Fig. 3: The main sequence mass fraction as a function of age for Kroupa9 and Salpeter10 IMFs. The Kroupa IMF is
lower at all nonzero ages because it has fewer low mass stars than Salpeter.

3.3. Single Stellar Populations 19

VICE, Release 1.1.0

where 𝑦CC
𝑥 (𝑍) is the user’s current setting for CCSN yields at a stellar metallicity Z. At subsequent timesteps, enrich-

ment from asymptotic giant branch (AGB) stars is injected according to12:

𝑀̇AGB
𝑥 ∆𝑡 ≈ 𝑦AGB

𝑥 (𝑚postMS(𝑡), 𝑍)𝑀⋆ [ℎ(𝑡) − ℎ(𝑡 + ∆𝑡)]

and from type Ia supernovae (SN Ia) according to13:

𝑀̇ Ia
𝑥 ∆𝑡 ≈ 𝑦Ia

𝑥 (𝑍)𝑀⋆
𝑅Ia(𝑡)∫︀∞

0
𝑅Ia(𝑡′)𝑑𝑡′

These are the same equations that are implemented in simulating enrichment under the single-zone approximation, but
applied to only one episode of star formation.

Users can run these simulations by calling vice.single_stellar_population.

Relevant Source Code:

• vice/src/ssp/ssp.c

• vice/core/ssp/_ssp.pyx

3.4 The Gas Supply

3.4.1 Inflows, Star Formation, and Efficiency

Like the enrichment equation, the time derivative of the mass of the gas in the interstellar medium (ISM) 𝑀𝑔 is a simple
sum of source and sink terms. For an infall rate (IFR) 𝑀̇in, star formation rate (SFR) 𝑀̇⋆, and outflow rate (OFR) 𝑀̇out:

𝑀̇𝑔 = 𝑀̇in − 𝑀̇⋆ − 𝑀̇out + 𝑀̇r

where 𝑀̇r is the rate of recycling from stars producing remnants and return gas to the ISM at their birth metallicity.
Because VICE is implemented with a Forward Euler solution, this equation is evaluated via:

∆𝑀𝑔 ≈ 𝑀̇𝑔∆𝑡 = 𝑀̇in∆𝑡− 𝑀̇⋆∆𝑡− 𝑀̇out∆𝑡 + 𝑀̇r∆𝑡

By construction, VICE operates such that the user specifies either an infall history (𝑀̇in as a function of time), a star
formation history (𝑀̇⋆ as a function of time), or the gas history (𝑀̇gas as a function of time). The user also specifies a
star formation efficiency timescale1:

𝜏⋆ ≡ 𝑀𝑔

𝑀̇⋆

Users may specify an arbitrary function of time in Gyr to describe 𝜏⋆, whose units are assumed to be Gyr. With one of
either 𝑀̇in, 𝑀̇⋆, or 𝑀̇𝑔 specified by the user, 𝜏⋆, and the implementation of 𝑀̇out and 𝑀̇r discussed in this section, the
solution to 𝑀𝑔 as a function of time is unique.

VICE also allows users to adopt a formulation of 𝜏⋆ that depends on the gas supply; this is an application of the
Kennicutt-Schmidt relation to the single-zone approximation. This is implemented as a power-law:

𝜏−1
⋆ = 𝜏−1

⋆,spec

(︂
𝑀𝑔

𝑀𝑔,Schmidt

)︂𝛼

where 𝑀𝑔,Schmidt is a normalizing gas supply and 𝜏⋆,spec is the user-specified 𝜏⋆. The singlezone object will employ
this scaling when the attribute schmidt = True.

Relevant Source Code:

• vice/src/singlezone/ism.c
12 Justification of this can be found here.
13 Justification of this can be found here.
1 In the astronomical literature, this quantity is often referred to as the “depletion time” rather than star formation efficiency. In the chemical

evolution literature, it quantifies the fractioanl rate at which gas is converted into stars, and is thus referred to as star formation efficiency. This is the

20 Chapter 3. Science Documentation

VICE, Release 1.1.0

3.4.2 Outflows

In the astronomical literature, the strength/efficiency of outflows are typically quantified according to a dimensionless
parameter referred to as the mass loading factor, defined as the ratio of the mass outflow rate to the star formation
rate: 𝜂 ≡ 𝑀̇out/𝑀̇⋆. Johnson & Weinberg (2020) introduced a new parameter to generalize this, dubbed the “outflow
smoothing time.” This is the timescale on which the star-formation rate is averaged (i.e. “smoothed”) to determine the
outflow rate:

𝑀̇out = 𝜂(𝑡)⟨𝑀̇⋆⟩𝜏s =
𝜂(𝑡)

𝜏s

∫︁ 𝑡

𝑡−𝜏s

𝑀̇⋆(𝑡′)𝑑𝑡′

At early times when 0 ≤ 𝑡 ≤ 𝜏s, this average is taken over only the time interval from 0 to 𝑡. This equation is
approximated numerically according to:

𝑀̇out ≈ 𝜂(𝑡)
∆𝑡

𝜏s

𝜏s/Δ𝑡∑︁
𝑖=0

𝑀̇⋆(𝑡− 𝑖∆𝑡)

Put simply, at each timestep VICE looks backs at the number of timesteps corresponding to the smoothing time, and
determines the arithmetic mean of the star formation rate at those timesteps, then multiplies this number by 𝜂(𝑡),
which may be a user-specified function of time in Gyr. An advantage of this formulation is that when 𝜏s < ∆𝑡, VICE
automatically recovers the traditional relation of 𝑀̇out = 𝜂(𝑡)𝑀̇⋆(𝑡).

Note: It is only the star formation rate which is time averaged. The mass loading factor is not time-averaged in any
way.

Relevant Source Code:

• vice/src/singlezone/ism.c

3.4.3 Recycling

As stars produce remnants, the mass that does not end up in the remnant is returned to the interstellar medium (ISM).
The net effect of this from all previous episodes of star formation quantifies the rate of recycling:

𝑀̇r =

∫︁ 𝑡

0

𝑀̇⋆(𝑡− 𝑡′)𝑟̇(𝑡′)𝑑𝑡′

where 𝑟(𝜏) is the cumulative return fraction from a single stellar population of age 𝜏 . This is approximated numerically
according to

𝑀̇r ≈
∑︁
𝑖

𝑀̇⋆(𝑡− 𝑖∆𝑡) [𝑟((𝑖 + 1)∆𝑡) − 𝑟(𝑖∆𝑡)]

This is an instance where the quantization of star forming episodes due to the Forward Euler solution simplifies the
implementation; the stars that form in previous timesteps contribute ∆𝑟 of their mass back to the ISM.

In the case of instantaneous recycling, this simplifies further to

𝑀̇r ≈ 𝑟inst𝑀̇⋆

Weinberg, Andrews & Freudenburg (2017)2 demonstrate that 𝑟inst = 0.4 (0.2) for a Kroupa3 (Salpeter4) IMF are good
approximations.

2 Weinberg, Andrews & Freudenburg (2017), ApJ, 837, 183
3 Kroupa (2001), MNRAS, 322, 231
4 Salpeter (1955), ApJ, 121, 161

3.4. The Gas Supply 21

https://ui.adsabs.harvard.edu/abs/2019arXiv191102598J/abstract

VICE, Release 1.1.0

Note: Instantaneous recycling refers only previously produced nucleosynthetic products. While this term has been
used to refer to instantaneous production of new heavy nuclei in the astronomical literature in the past, VICE retains
this approximation only for enrichment from core collapse supernovae.

Relevant Source Code:

• vice/src/singlezone/recycling.c

3.5 Enrichment

VICE takes a general approach in modeling nucleosynthesis. All elements are treated equally; there are no special
considerations for any element. In this documentation we derive the analytic form of the enrichment equation for
an arbitrary element 𝑥 with arbitrary nucleosynthetic yields for arbitrary evolutionary histories. This is an integro-
differential equation of the element’s mass as a function of time, which VICE solves as an initial-value problem by
imposing the boundary condition that its abundance at time zero is given by the primordial abundance from big bang
nucleosynthesis. In this version of VICE, helium is the only element for which this value is nonzero.

3.5.1 The Enrichment Equation

The enrichment equation quantifies the rate of change of an element’s total mass present in the interstellar medium
(ISM). At its core, it is a simple sum of source and sink terms.

𝑀̇𝑥 = 𝑀̇CC
𝑥 + 𝑀̇ Ia

𝑥 + 𝑀̇AGB
𝑥 − 𝑀𝑥

𝑀𝑔

[︁
𝑀̇⋆ + 𝜉enh𝑀̇out

]︁
+ 𝑀̇ r

𝑥 + 𝑍𝑥,in𝑀̇in

where 𝑀𝑥 is the mass of the element 𝑥 in the interstellar medium, 𝑀̇𝑥 its time-derivative, and 𝑀𝑔 the mass of the ISM
gas. 𝑀̇CC

𝑥 , 𝑀̇ Ia
𝑥 , and 𝑀̇AGB

𝑥 quantify the rate of production from core-collapse supernovae (CCSNe), type Ia supernovae
(SNe Ia), and asymptotic giant branch (AGB) stars, respectively.

We detail each term individually here.

3.5.2 Core Collapse Supernovae

Core collapse supernovae (CCSNe) are the explosions of massive stars (& 8𝑀⊙) at the end of their post main sequence
lifetimes. Due to the steep nature of the lifetime-stellar mass relationship, these stars have lifetimes that are extremely
short compared to the relevant timescales of galactic chemical evolution (∼ few Myr compared to ∼ few Gyr). To a
good approximation, the lifetimes of these stars can be treated as instantaneous in zone models.

Note: Another motivation for this approximation is that the lifetimes are often significantly shorter than the typical
mixing timescales in even modestly sized galaxies. The longest lifetimes of these stars is of order tens of megayears;
in comparison, the mixing timescale in the solar annulus of the Milky Way is likely comparable to the dynamical
timescale at this distance (∼ 250 Myr, a factor of ten larger). Zone models at their core already assume that these
mixing timescales are negligibly short due to the assumption of instantaneous mixing; if CCSN timescales are even
shorter, then they can certainly also be modeled as instantaneous.

VICE therefore approximates CCSNe as being simultaneous with the formation of their progenitor stars. This implies
a linear relationship between the rate of production of some element 𝑥 from CCSNe and the star formation rate:

𝑀̇CC
𝑥 = 𝜖CC

𝑥 𝑦CC
𝑥 (𝑍)𝑀̇⋆

22 Chapter 3. Science Documentation

VICE, Release 1.1.0

where 𝑦CC
𝑥 is the IMF-averaged fractional net yield of the element 𝑥 from CCSNe at a metallicity 𝑍: the fraction of

the entire stellar population’s initial mass that is processed into the element 𝑥 and ejected to the interstellar medium
minus the amount that the star was born with. 𝜖CC

𝑥 is the entrainment fraction of the element 𝑥 from CCSNe; this is the
mass fraction of the net yield which is retained by the interstellar medium, the remainder of which is added directly to
the outflow.

Note: VICE implements recycling of previously produced elements separate from nucleosynthesis, running from the
standpoint of net rather than absolute yields.

In practice, 𝑦CC
𝑥 is highly uncertain1. VICE therefore makes no assumptions about the user’s desired form of the

yield; this parameter can be assigned either a number to represent a metallicity-independent yield, or a function of the
metallicity by mass 𝑍 = 𝑀𝑥/𝑀𝑔 . VICE includes features which will calculate the value of 𝑦CC

𝑥 for a given element
and metallicity based on the results of supernova nucleosynthesis studies upon request, but requires the user to specify
an exact number or function.

Relevant Source Code:

• vice/src/singlezone/ccsne.c

• vice/core/dataframe/_yield_settings.pyx

• vice/yields/ccsne/__init__.py

3.5.3 Type Ia Supernovae

Type Ia supernovae are the thermonuclear detonations of white dwarf stars. Being the remnants of lower-mass stars,
white dwarfs are born and explode on timescales longer than the mixing timescales of galaxies. Therefore, the intrinsic
time delay is non-negigible.

This requires a model for the SN Ia delay-time distribution (DTD), defined as the rate of SN Ia explosions associated
with a single stellar population. Given a DTD 𝑅Ia and an age 𝜏 , the rate of production of some element 𝑥 from a single
stellar population is given by

𝑀̇ Ia
𝑥 = 𝜖Ia

𝑥𝑦
Ia
𝑥 (𝑍)𝑀*

𝑅Ia(𝜏)∫︀∞
0

𝑅Ia(𝑡)𝑑𝑡

Note: The integral of this equation from 𝑡 = 0 to ∞ must equal the yield times the mass of the stellar population.
This necessitates the normalization of the DTD.

where 𝑦Ia
𝑥 is the IMF-averaged fractional net yield of the element 𝑥 from SNe Ia at metallicity 𝑍: the fraction of the

stellar population’s initial mass that is processed into the element 𝑥 and ejected to the interstellar medium minus the
amount that the star was born with. 𝜖Ia

𝑥 is the entrainment fraction of the element 𝑥 from SNe Ia; this is the mass fraction
of the net yield which is retained by the interstellar medium, the remainder of which is added directly to the outflow.

Note: VICE implements recycling of previously produced elements separate from nucleosynthesis, running from the
standpoint of net rather than absolute yields.

In practice, 𝑦Ia
𝑥 is highly uncertain2. VICE therefore makes no assumptions about the user’s desired form of the yield;

this parameter can be assigned either a number to represent a metallicity-independent yield or a function of metallicity
by mass 𝑍 = 𝑀𝑥/𝑀𝑔 . VICE includes features which will calculate the value of 𝑦Ia

𝑥 for a given element and metallicity
1 See Andrews, Weinberg, Schoenrich & Johnson (2017), ApJ, 835, 224 and the citations therein for a detailed analysis of multiple elements.
2 See Andrews, Weinberg, Schoenrich & Johnson (2017), ApJ, 835, 224 and the citations therein for a detailed analysis of multiple elements.

3.5. Enrichment 23

VICE, Release 1.1.0

based on the results of supernova nucleosynthesis studies upon request, but requires the user to specify an exact number
or function.

The rate of enrichment from all previous episodes of star formation can be derived by integrating this equation over all
ages:

𝑀̇ Ia
𝑥 = 𝑦Ia

𝑥 (𝑍)

∫︀ 𝑡

0
𝑀̇*(𝑡′)𝑅Ia(𝑡− 𝑡′)𝑑𝑡′∫︀∞

0
𝑅Ia(𝑡′)𝑑𝑡′

This can also be expressed as the star formation history up to a time 𝑡 weighted by the SN Ia rate. VICE approximates
this equation as:

𝑀̇ Ia
𝑥 ≈

∑︀
𝑖 𝑦

Ia
𝑥 (𝑍ISM(𝑖∆𝑡))𝑀̇*(𝑖∆𝑡)𝑅Ia(𝑡− 𝑖∆𝑡)∆𝑡∑︀𝑇Ia

𝑖 𝑅Ia(𝑖∆𝑡)∆𝑡

where the sum in the numerator is over all timesteps and in the denominator up to a time 𝑇Ia denoting an adopted full
length of the SN Ia duty cycle. The constant RIA_MAX_EVAL_TIME declares 𝑇Ia = 15 Gyr in vice/src/sneia.h.

In implementation, VICE normalizes the DTD at the beginning of the simulation. For an age 𝜏 = 𝑡− 𝑡′:

𝑅Ia(𝜏) → 𝑅Ia(𝜏)∫︀ 𝑇Ia
0

𝑅Ia(𝜏)𝑑𝜏
≈ 𝑅Ia(𝑡− 𝑖∆𝑡)∑︀𝑇Ia

𝑖 𝑅Ia(𝑖∆𝑡)∆𝑡
=⇒ 𝑅Ia(𝑡− 𝑡′)∆𝑡 → 𝑅Ia(𝑡− 𝑖∆𝑡)∆𝑡∑︀𝑇Ia

𝑖 𝑅Ia(𝑖∆𝑡)∆𝑡

Inserting the normalized rate into the equation for 𝑀̇ Ia
𝑥 :

𝑀̇ Ia
𝑥 ≈

∑︁
𝑖

𝑦Ia
𝑥 (𝑍ISM(𝑖∆𝑡))𝑀̇*(𝑖∆𝑡)𝑅Ia(𝑡− 𝑖∆𝑡)

VICE implements this normalization of 𝑅Ia at the beginning of simulations due to the simplification of this expression
introduced in doing so. This reduces the computational expense in calculating this quantity for each element at each
timestep.

VICE includes two built-in DTDs, denoting by strings as plaw and exp. As their names suggest, they are a power-law
and an exponential DTD:

• “plaw”: 𝑅Ia ∼ 𝑡−1.1

• “exp”: 𝑅Ia ∼ 𝑒−𝑡/𝜏Ia

Users may also construct their own functional forms of 𝑅Ia, which must accept time in Gyr as the only parameter.
These functions need not be normalized in any way; VICE normalizes the DTD automatically.

Relevant Source Code:

• vice/src/sneia.h

• vice/src/singlezone/sneia.c

• vice/yields/sneia/__init__.py

3.5.4 Asymptotic Giant Branch Stars

Asymptotic giant branch (AGB) stars are evolved stars that have carbon-oxygen cores surrounded by helium and hy-
drogen shells. These stars undergo thermal pulsations due to explosive ignition of helium fusion in the shell, typically
referred to as helium shell flashes. During these pulses, material from the core is often mixed into the outer layers
via convection, a process known as dredge-up. This brings heavy nuclei produced in the deeper regions of the star
to the envelope, which is then ejected to the interstellar medium (ISM). This is one of the primary sites of s-process
nucleosynthesis in the universe.

24 Chapter 3. Science Documentation

VICE, Release 1.1.0

It may be tempting to model AGB star enrichment as a delay-time distribution (DTD) similar to that adopted for SNe
Ia. However, this approach would implicitly adopt the assumption that every element is enriched via AGB stars with the
same DTD, or that for a given element, the effective DTD is independent of metallicity. These may be fine assumptions,
but it is not adopted in VICE due to the desire for as few assumptions as possible.

Instead, AGB star enrichment in VICE is implemented using the mass-lifetime relationship for stars and the main
sequence mass fraction (MSMF). However, the form of the MSMF required here differs in detail from the true MSMF.
Being evolved stars, the MSMF does not consider AGB stars. It is thus not the MSMF and the main sequence lifetimes
of stars that are of interest, but the mass fraction of both main sequence and evolved stars and the total lifetime of stars.
The form of ℎ(𝑡) necessary for modeling AGB star enrichment then changes to:

ℎ(𝑡) →
∫︀𝑚postMS(𝑡)

𝑙
𝑚𝑑𝑁

𝑑𝑚𝑑𝑚∫︀ 𝑢

𝑙
𝑚𝑑𝑁

𝑑𝑚𝑑𝑚

The numerator is evaluated from 𝑙 to the mass of stars ending their post main sequence lifetime 𝑚postMS rather than the
main sequence turnoff mass 𝑚to. As detailed here for a stellar population of age 𝜏 :

𝑚postMS =

(︂
𝜏

(1 + 𝑝MS)𝜏⊙

)︂−1/𝛼

where 𝛼 is the power-law index on the mass-lifetime relationship, 𝜏⊙ is the main sequence lifetime of the sun, and 𝑝MS
is the ratio of a star’s post main sequence lifetime to its main sequence lifetime.

From a single stellar population, the rate of ejection of an element 𝑥 from AGB stars to the ISM is given by:

𝑀̇AGB
𝑥 = −𝜖AGB

𝑥 𝑦AGB
𝑥 (𝑚postMS, 𝑍)𝑀⋆ℎ̇

where ℎ̇ is evaluated at the lookback time to the stellar population’s formation3, 𝑀⋆ is the initial mass of the stellar
population, and 𝑦AGB

𝑥 is the fractional net yield of 𝑥 from an AGB star of initial mass 𝑚postMS and metallicity 𝑍: the
fraction of a single star’s initial mass that is processed into element 𝑥 and ejected to the interstellar medium minus the
amount that the star was born with. 𝜖AGB

𝑥 is the entrainment fraction of the element 𝑥 from AGB stars; this is the mass
fraction of the net yield which is retained by the interstellar medium, the remainder of which is added directly to the
outflow.

Note: VICE implements recycling of previously produced elements separate from nucleosynthetic yields, running
from the standpoint of net rather than absolute yields.

For continuous star formation, the enrichment rate can be expressed as this quantity integrated over the star formation
history:

𝑀̇AGB
𝑥 = −

∫︁ 𝑡

0

𝑦AGB
𝑥 (𝑚postMS(𝑡− 𝑡′), 𝑍ISM(𝑡′))𝑀̇⋆(𝑡′)ℎ̇(𝑡− 𝑡′)𝑑𝑡

This expression is approximated numerically as:

𝑀̇AGB
𝑥 ≈

∑︁
𝑖

𝑦AGB
𝑥 (𝑚postMS(𝑡− 𝑖∆𝑡), 𝑍ISM(𝑖∆𝑡))𝑀̇⋆(𝑖∆𝑡) [ℎ((𝑖 + 1)∆𝑡) − ℎ(𝑖∆𝑡)]

where the summation is taken over all previous timesteps. The need to differentiate ℎ with time is eliminated in the
numerical approximation by allowing each stellar population to be weighted by ∆ℎ between the current timestep and
the next, made possible by the quantization of timesteps.

In practice, 𝑦AGB
𝑥 is highly uncertain4. VICE therefore makes no assumptions about the user’s desired form of the yield;

this parameter can be assigned either a built-in table published in an AGB star nucleosynthesis study or a function of
stellar mass and metallicity constructed by the user.

Relevant source code:
3 There is a minus sign here because ℎ(𝑡) is a monotonically decreasing function, and thus ℎ̇ < 0.
4 See Andrews, Weinberg, Schoenrich & Johnson (2017), ApJ, 835, 224 and the citations therein for a detailed analysis of multiple elements.

3.5. Enrichment 25

VICE, Release 1.1.0

• vice/src/singlezone/agb.c

• vice/core/dataframe/_agb_yield_settings.pyx

• vice/yields/agb/__init__.py

3.5.5 Subsequent Terms

The remaining terms in the enrichment equation make simple statements about remaining source and sink terms.

VICE retains the assumption that stars are born at the same metallicity as the ISM from which they form. This motivates
the sink term

−
(︂
𝑀𝑥

𝑀𝑔

)︂
𝑀̇⋆

where the mass of the element 𝑥 is depleted at the metallicity of the ISM 𝑍𝑥 = 𝑀𝑥/𝑀𝑔 in proportion with the star
formation rate 𝑀̇⋆.

Many galactic chemical evolution models to date have assumed that outflows from galaxies occur at the same metallicity
of the ISM. This would suggest that 𝑀̇ out

𝑥 ≈ (𝑀𝑥/𝑀𝑔)𝑀̇out. However, recent work in the astronomical literature from
both simulations (e.g. Christensen et al. (2018)5) and observations (e.g. Chisholm, Trimonti & Leitherer (2018)6)
suggest that this may not be the case. Therefore, VICE allows outflows to occur at some multiplicative factor 𝜉enh
above or below the ISM metallicity, which may vary with time. This motivates the sink term

−
(︂
𝑀𝑥

𝑀𝑔

)︂
𝜉enh𝑀̇out

Because VICE works with net rather than absolute yields, simulations must quantify the rate at which stars return mass
to the ISM at their birth metallicity. This is mathematically similar to the rate of total gas recycling, but weighted by
the metallicities of the stars recycling. Since stars are assumed to form at the metallicity of the ISM,

𝑀̇ r
𝑥 =

∫︁ 𝑡

0

𝑀̇⋆(𝑡′)𝑍𝑥,ISM(𝑡′)𝑟̇(𝑡− 𝑡′)𝑑𝑡

where 𝑟(𝜏) is the cumulative return fraction from a single stellar population of age 𝜏 . This is approximated numerically
as

𝑀̇ r
𝑥 ≈

∑︁
𝑖

𝑀̇⋆(𝑖∆𝑡)𝑍𝑥,ISM(𝑖∆𝑡) [𝑟((𝑖 + 1)∆𝑡) − 𝑟(𝑖∆𝑡)]

where the summation is taken over all previous timesteps. The need to differentiate 𝑟 with time is eliminated in the
numerical approximation by allowing each stellar population to be weighted by ∆𝑟 between the current timestep and
the next, made possible by the quantization of timesteps. In the event that the user has specified instantaneous recycling:

𝑀̇ r
𝑥 = 𝑟inst𝑀̇⋆𝑍𝑥,ISM

At any given timestep, there is gas infall onto the simulated galaxy of a given metallicity 𝑍. In most cases this term
is negligibly small, but in some interesting cases it may not be (e.g. a major merger event). This necessitates the final
term 𝑍𝑥,in𝑀̇in.

Relevant Source Code:

• vice/src/singlezone/recycling.c

• vice/src/singlezone/element.c

• vice/src/singlezone/ism.c
5 Christensen et al. (2018), ApJ, 867, 142
6 Chisholm, Trimonti & Leitherer (2018), MNRAS, 481, 1690

26 Chapter 3. Science Documentation

VICE, Release 1.1.0

3.5.6 Sanity Checks

At all timesteps VICE forces the mass of every element to be non-negative. If the mass is found to be below zero at any
given time, it is assumed to not be present in the interstellar medium and is assigned a mass of exactly zero. Absent this,
the mass of each element reported by VICE is merely the numerically estimated solution to the enrichment equation.

Relevant source code:

• vice/src/singlezone/element.c

3.6 Nucleosynthetic Yields

Due to the associated uncertainties1, VICE takes an agnostic approach to the user’s desired nucleosynthetic yields.
Rather than adopting the results of a nucleosynthesis study, the user declares their yields outright. VICE includes
features which will calculate yields upon request, but requires the user to explicitly tell it what the yield of each element
from each enrichment channel should be (although there is a set of defaults).

All yields in VICE are defined as fractional net yields. This is the amount of an element that is produced and ejected
to the interstellar medium minus that which was already present, in units of the star or stellar population’s initial mass.
Previously produced nuclei should not be taken into account, because this is handled via recycling. For example, if
a stellar population is born with 1𝑀⊙ of oxygen total and ejects 1𝑀⊙ of oxygen back to the interstellar medium, the
yield is zero since there is no net gain.

Yields are also defined for the average star or stellar population. Stochasticity in yields introduced by, e.g., sampling
of the stellar initial mass function, should not be taken into account in yield calculations intended for use in VICE.

3.6.1 Core Collapse Supernovae

Because core collapse supernovae (CCSNe) are assumed to occur simultaneously with the formation of their progenitor
stars2, 𝑦CC

𝑥 represents the total yield from all CCSNe associated with a single stellar population. Letting 𝑚𝑥 denote the
net mass of some element 𝑥 present in the CCSN ejecta, the yield at a given metallicity is defined by:

𝑦CC
𝑥 ≡

∫︀ 𝑢

𝑙CC
𝐸(𝑚)𝑚𝑥

𝑑𝑁
𝑑𝑚𝑑𝑚∫︀ 𝑢

𝑙
𝑚𝑑𝑁

𝑑𝑚𝑑𝑚

where the numerator is taken from the minimum mass for a CCSN explosion 𝑙CC to the upper mass limit of star for-
mation 𝑢, but the denominator is over the entire mass range of star formation, and 𝑑𝑁/𝑑𝑚 is the stellar initial mass
function (IMF). 𝐸(𝑚) denotes the explodability: the fraction of stars of mass 𝑚 which explode as a CCSN. The con-
stant CC_MIN_STELLAR_MASS declares 𝑙CC = 8𝑀⊙ in vice/src/ccsne.h. This equation is nothing more than the
mathematical statement of “production divided by total initial mass.”

In practice, supernova nucleosynthesis studies determine the value of 𝑚𝑥 for of order 10 values of 𝑚 at a given metal-
licity and rotational velocity. To compute the numerator of this equation, VICE adopts a grid of 𝑚𝑥 values from a
user-specified nucleosynthesis study, interpolating linearly between values of 𝑚 on the grid. We clarify that the inter-
polation is linaer in 𝑚, and not log𝑚.

In this version of VICE, users can choose between the following nucleosynthesis studies:

• Limongi & Chieffi (2018), ApJS, 237, 13

• Chieffi & Limongi (2013), ApJ, 764, 21

• Chieffi & Limongi (2004), ApJ, 608, 405
1 See Andrews, Weinberg, Schoenrich & Johnson (2017), ApJ, 835, 224 and the citations therein for a detailed analysis of multiple elements.
2 See the discusion on CCSN enrichment for justification of this assumption.

3.6. Nucleosynthetic Yields 27

VICE, Release 1.1.0

• Woosley & Weaver (1995), ApJS, 101, 181

By default, VICE will assume that all stars above 8𝑀⊙ explode as a CCSN. Because stellar explodability is an open
question in astronomy3, 𝐸(𝑚) can be specified as an arbitrary mathematical function, which must accept stellar mass
in 𝑀⊙ as the only parameter. Lastly, this can be done with either the built-in Kroupa4 or Salpeter5 IMFs, or a function
of mass interpreted as a user-constructed IMF.

Note: VICE also forces 𝑚𝑥 = 0 at 8𝑀⊙, the default value of 𝑙CC, in order to minimize numerical artifacts introduced
when extrapolating off of the grid in 𝑚 to lower stellar masses.

Users can evaluate the solution to this equation by calling the function vice.yields.ccsne.fractional, imple-
mented in vice/yields/ccsne/_yield_integrator.pyx. This function makes use of numerical quadrature rou-
tines written in ANSI/ISO C built into VICE, and is thus not dependent on any publicly available quadrature functions
such as those found in scipy.

In addition to evaluating the solution to this equation, users may also read in the table of 𝑚𝑥 values by calling vice.
yields.ccsne.table, and may request the full isotopic breakdown. A dataframe is returned from this function.

Note: These functions have no impact whatsoever on the chemical enrichment simulations built into VICE. Users
declare their own yields for that purpose, while this function merely calculates them.

Relevant Source Code:

• vice/src/yields/integral.c

• vice/yields/ccsne/_yield_integrator.pyx

• vice/yields/ccsne/table.py

• vice/core/dataframe/_ccsn_yield_table.pyx

3.6.2 Type Ia Supernovae

The net yield of some element 𝑥 from a single stellar population due to type Ia supernovae (SNe Ia) can be expressed
as the total production from the duty cycle of the delay-time distribution (DTD) 𝑅Ia:

𝑦Ia
𝑥 ≡ 𝑀𝑥

∫︁ ∞

0

𝑅Ia(𝑡)𝑑𝑡

where 𝑀𝑥 is the average mass yield of the element 𝑥 from a single type Ia supernovae.

Note: In the astronomical literature, the delay-time distribution is usually defined as the rate of SN Ia explosions
per unit stellar mass formed 𝑀⋆. 𝑅Ia thus has units of 𝑀−1

⊙ 𝑦𝑟−1, making 𝑦Ia
𝑥 unitless as it should be. We retain this

definition here for consistency.

The integral over the DTD is simply the number of SN Ia events that occur per unit stellar mass formed:

𝑦Ia
𝑥 = 𝑀𝑥

𝑁Ia

𝑀⋆

Intuitively, the SN Ia yield is thus specified by the mass yield of a single SN Ia explosion and the number of SN Ia
events that occur per unit solar mass formed.

3 See the discussion in Sukhbold et al. (2016), ApJ, 821, 38 and the citations therein for details.
4 Kroupa (2001), MNRAS, 231, 322
5 Salpeter (1955), ApJ, 121, 161

28 Chapter 3. Science Documentation

VICE, Release 1.1.0

Maoz & Mannucci (2012)6 found that 𝑁Ia/𝑀⋆ = (2± 1)× 10−3𝑀−1
⊙ . That is, on average, approximately 500 𝑀⊙ of

stars must form for a given stellar population to produce a single SN Ia.

The value of 𝑀𝑥 can be determined from the results of simulation of SNe Ia. The yield is then evaluated with a
user-specified value of 𝑁Ia/𝑀⋆; the default value is 𝑁Ia/𝑀⋆ = 2.2 × 10−3, the best-fit value from Maoz & Mannucci
(2012).

In this version of VICE, users can choose between the following nucleosynthesis studies:

• Iwamoto et al. (1999), ApJ, 124, 439

• Seitenzahl et al. (2013), MNRAS, 429, 1156

Note: These functions have no impact whatsoever on the chemical enrichment simulations built into VICE. Users
declare their own yields for that purpose, while this function merely calculates them.

Relevant Source Code:

• vice/yields/sneia/_yield_lookup.pyx

3.6.3 Asymptotic Giant Branch Stars

The net yield of some element 𝑥 from an asymptotic giant branch (AGB) star is defined as the net fraction of a star’s
mass that is converted to an element 𝑥. For many elements, this also varies considerably with the initial metallicity of
the star. This is therefore inherently a function of two parameters:

𝑦AGB
𝑥 (𝑀⋆, 𝑍) =

𝑀𝑥,ejected

𝑀⋆(|𝑍)

where 𝑀⋆(|𝑍) is the mass of a single star of known metallicity 𝑍.

Contrary to yields from supernovae, no remaining calculations are necessary, because 𝑀𝑥,ejected is quantified in super-
nova nucleosynthesis studies, and VICE’s internal data tables have already divided these values by 𝑀⋆(|𝑍). These
tables are sampled on of order ∼ 10 solar masses and metallicities; users may adopt these tables in their simulations
and VICE will determine the yield for all other masses and metallicities via bilinear interpolation between masses and
metallicities on the grid. For masses and metallicities above or below the grid, it extrapolates from the two highest or
lowest elements on the grid, respectively. Users may also construct their own mathematical forms of 𝑦AGB

𝑥 .

In this version of VICE, users can choose between the following nucleosynthesis studies:

• Cristallo et al. (2011), ApJS, 197, 17

• Karakas (2010), MNRAS, 403, 1413

Users can also read these tables in with the vice.yields.agb.grid function.

Relevant Source Code:

• vice/src/singlezone/agb.c

• vice/yields/agb/_grid_reader.pyx
6 Maoz & Mannucci (2012), PASA, 29, 447

3.6. Nucleosynthetic Yields 29

VICE, Release 1.1.0

3.7 Scaling of the Total Metallicity

VICE quantifies the total metallicity by mass of both gas and stars in VICE according to:

𝑍 = 𝑍⊙

∑︀
𝑖 𝑍𝑖∑︀

𝑖 𝑍𝑖,⊙

where the summation is taken over all elements tracked by the simulation. This is motivated by numerical artifacts that
would be introduced into metallicity dependent quantities when only a small number of elements are being simulated.
For example, if there are only three elements in a simulation and they are all near the solar abundance, this scaling
ensures that metallicity dependent yields will behave as if the metallicity is near solar, as opposed to the much lower
total metallicity of only three elements.

This is where the user’s adopted solar metallicity 𝑍⊙ enters in their simulations. Because the element-by-element
breakdown of the solar composition 𝑍𝑖,⊙ is taken from Asplund et al. (2009)1, we recommend adopting 𝑍⊙ = 0.014
from their findings for a self-consistent scaling.

The total logarithmic metallicity [𝑀/𝐻] relative to the sun is then evaluated according to:

[𝑀/𝐻] = log10

(︂
𝑍

𝑍⊙

)︂
= log10

(︃∑︁
𝑖

𝑍𝑖

)︃
− log10

(︃∑︁
𝑖

𝑍𝑖,⊙

)︃

Note: These quantities are not recorded with outputs in order to minimize write-out time when the number of elements
is high. Instead, history and tracer objects evaluate these equations automatically for gas and stars, respectively.

3.8 Stellar Metallicity Distribution Functions

VICE’s singlezone objects automatically determine normalized stellar metallicity distribution functions (MDFs) for
each simulation. The MDF, in its most general form, is given by:

𝑑𝑁

𝑑𝑍
=

𝑁̇

𝑍̇
∝ 𝑀̇⋆

𝑍̇

This is fairly intuitive; the number of stars that form at a metallicity ≈ Z is proportional to the star formation rate at that
time and inversely related to the rate at which the metallicity is evolving away from that value. VICE converts MDFs
to probability distribution functions by ensuring that the integral over the bins is equal to one:

𝑑𝑁

𝑑[𝑋/𝑌]
→ 𝑑𝑁/𝑑[𝑋/𝑌]∫︀

𝑑𝑁
=

𝑑𝑁/𝑑[𝑋/𝑌]∫︀∞
−∞

𝑑𝑁
𝑑[𝑋/𝑌]𝑑[𝑋/𝑌]

Note: In its current version, VICE only reports MDFs at the final timestep of the simulation.

In practice, the user specifies an array of bin-edges that they would like the MDF sorted into, and VICE creates arrays of
zeroes whose lengths are the number of bins in the user’s array. In a singlezone simulation, the appropriate bins for each
combination of [X/H] and [X/Y] are incremented by the star formation rate. At the final timestep, the normalization of
the i’th bin is then approximated numerically by:

∆𝑁𝑖

∆[𝑋/𝑌]𝑖
→ ∆𝑁𝑖/∆[𝑋/𝑌]𝑖∑︀

𝑗
Δ𝑁𝑗

Δ[𝑋/𝑌]𝑗
∆[𝑋/𝑌]𝑗

=
∆𝑁𝑖/∆[𝑋/𝑌]𝑖∑︀

𝑗 ∆𝑁𝑗

The fraction of stars in a given range ∆[𝑋/𝑌] is then given by the value of the reported MDF times ∆[𝑋/𝑌].
1 Asplund et al. (2009), ARA&A, 47, 481

30 Chapter 3. Science Documentation

CHAPTER

FOUR

COMPREHENSIVE API REFERENCE

4.1 From the Command Line

Included with VICE is a command line entry which runs simple simulations from a terminal. This feature allows the
parameters of a onezone model to be specified as command-line arguments; run vice --help from a terminal after
installing VICE (from any directory except the source tree). While these command-line capabilities are useful for their
ease, VICE is severaly limited in capability when ran from the command-line in comparison to when ran from the
Python interpreter.

VICE also includes a command-line entry for automatically accessing the documentation. Simply run vice --docs
from any directory except the source tree, and the documentation will be opened by the default web browser.

4.2 Package Contents

VICE: Versatile Integrator for Chemical Evolution

4.2.1 Provides

• A dataframe object meant for case-insensitive lookup

• Simulations of galactic chemical evolution models

• Simulations of nucleosynthesis from single stellar populations

• Built-in yield tables from nucleosynthesis studies

4.2.2 How to Access the Documentation:

Documentation is available in several forms:

1. Online: http://vice-astro.readthedocs.io

2. In PDF format, available for download at the same address

3. In the docstrings embedded within the software

Running vice --docs from the terminal will open the online documentation in the default web browser.

First time users should go through VICE’s QuickStartTutorial jupyter notebook, available under examples/ in the git
repository. This can be launched from the command line by running vice --tutorial.

Example scripts can be found under examples/ in the git repository at http://github.com/giganano/VICE.

31

https://www.python.org/
http://vice-astro.readthedocs.io
http://github.com/giganano/VICE

VICE, Release 1.1.0

4.2.3 Contents

singlezone [type] Simulate a single-zone galactic chemical evolution model

output [type] Read and store output from single- and multi-zone simulations.

single_stellar_population [<function>] Simulate enrichment from a single conatal star cluster

cumulative_return_fraction [<function>] Calculate the cumulative return fraction of a star cluster of known age

main_sequence_mass_fraction [<function>] Calculate the main sequence mass fraction of a star cluster of known
age

imf [<module>] Built-in funcitonal forms of popular stellar initial mass functions.

yields [<module>] Calculate, access, and declare nucleosynthetic yield settings for use in simulations.

elements [<module>] Access, and declare nucleosynthetic yield settings for use in simulations. Access other relevant
information for each element such as the solar abundance or atomic number.

dataframe [type] An extension to the Python type dict to allow case-insensitivity.

history [<function>] Reads in time-evolution of interstellar medium from singlezone simulation.

mdf [<function>] Reads in stellar metallicity distribution from singlezone simulation.

4.2.4 Built-In Dataframes

• atomic_number : The atomic number of each element

• primordial : The abundance of each element following big bang nucleosynthesis.

• solar_z : The abundance of each element in the sun.

• sources : The primary astrophysical production channels of each element.

• stable_isotopes : Lists of each elements’ stable isotopes.

4.2.5 Utilities

• VisibleDeprecationWarning : A DeprecationWarning that is visible by default.

• VisibleRuntimeWarning : A RuntimeWarning that is visible by default.

• ScienceWarning : A Warning concerning scientific accuracy and precision.

• test : Runs VICE’s unit tests.

• version : VICE’s version breakdown.

• __version__ : The version string.

32 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.version

VICE’s version_info

• major : The major version number

• minor : The minor version number

• micro : The micro version number (also known as patch number)

• build : The build number

• __version__ : The version string <major>.<minor>.<micro>

• released : If True, this version of VICE has been released

Note: This object can be type-cast to a tuple of the form: (major, minor, micro, build).

vice.atomic_number

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

4.2. Package Contents 33

VICE, Release 1.1.0

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

vice.primordial

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.
1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

34 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.
1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

4.2. Package Contents 35

VICE, Release 1.1.0

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

vice.solar_z

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

36 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Functions

• keys

• todict

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

4.2. Package Contents 37

VICE, Release 1.1.0

vice.sources

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.
1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

38 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

vice.stable_isotopes

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

4.2. Package Contents 39

VICE, Release 1.1.0

Functions

• keys

• todict

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

40 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.cumulative_return_fraction

Calculate the cumulative return fraction for a single stellar population at a given age. This quantity represents the
fraction of the stellar population’s mass that is returned to the interstellar medium as gas at the birst metallicity of the
stars.

Signature: vice.cumulative_return_fraction(age, IMF = “kroupa”, m_lower = 0.08, postMS = 0.01)

Parameters

age [real number] The age of the stellar population in Gyr.

IMF [str [case-insensitive] [default][“kroupa”]] The assumed stellar initial mass function (IMF). Strings denote built-
in IMFs.

Recognized built-in IMFs:

• Kroupa1

• Salpeter2

Note: Functions do not need to be normalized. VICE will take care of this automatically.

m_upper [real number [default][100]] The upper mass limit on star formation in solar masses.

m_lower [real number [default][0.08]] The lower mass limit on star formation in solar masses.

postMS [real number [default][0.1]] The ratio of a star’s post main sequence lifetime to its main sequence lifetime.

New in version 1.1.0.

Returns

crf [real number] The value of the cumulative return fraction for a stellar population at the specified age under the
specified parameters.

Notes

Note: VICE operates under the approximation that stars have a mass-luminosity relationship given by:

𝐿 ∼ 𝑀4.5

leading to a mass-lifetime relation that is also a power law, given by:

𝜏 ∼ 𝑀/𝐿 ∼ 𝑀−3.5

Note: VICE implements the remnant mass model of Kalirai et al. (2008)3, assuming that stars above 8 𝑀⊙ leave
behind remnants of 1.44 𝑀⊙, while stars below 8 𝑀⊙ leave behind remnants of 0.394𝑀⊙ + 0.109𝑀 .

1 Kroupa (2001), MNRAS, 231, 322
2 Salpeter (1955), ApJ, 121, 161
3 Kalirai et al. (2008), ApJ, 676, 594

4.2. Package Contents 41

VICE, Release 1.1.0

Raises

• TypeError

– age is not a real number

– IMF is neither a string nor a function

– m_upper is not a real number

– m_lower is not a real number

– postMS is not a real number

• ValueError

– age < 0

– built-in IMF is not recognized

– m_upper <= 0

– m_lower <= 0

– m_lower >= m_upper

– postMS < 0 or > 1

Example Code

>>> vice.cumulative_return_fraction(1)
0.3560160079575864

>>> vice.cumulative_return_fraction(2)
0.38056657042902253

>>> vice.cumulative_return_fraction(3)
0.394760119115021

vice.main_sequence_mass_fraction

Calculate the main sequence mass fraction for a single stellar population at a given age. This quantity represents the
fraction of the stellar population’s mass that is still in the form of stars on the main sequence.

Signature: vice.main_sequence_mass_fraction(age, IMF = “kroupa”, m_upper = 100, m_lower = 0.08)

Parameters

age [real number] The age of the stellar population in Gyr.

IMF [str [case-insensitive] [default][“kroupa”]] The assumed stellar initial mass function (IMF). Strings denote built-
in IMFs.

Recognized built-in IMFs:

• Kroupa1

• Salpeter2

1 Kroupa (2001), MNRAS, 231, 322
2 Salpeter (1955), ApJ, 121, 161

42 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Note: Functions do not need to be normalized. VICE will take care of this automatically.

m_upper [real number [default][100]] The upper mass limit on star formation in solar masses.

m_lower [real number [default][0.08]] The lower mass limit on star formation in solar masses.

Returns

msmf [real number] The value of the main sequence mass fraction for a stellar population at the specified age under
the specified parameters.

Notes

Note: VICE operates under the approximation that stars have a mass-luminosity relationship given by:

𝐿 ∼ 𝑀4.5

leading to a mass-lifetime relation that is also a power-law, given by:

𝜏 ∼ 𝑀/𝐿 ∼ 𝑀−3.5

Raises

• TypeError

– age is not a real number

– IMF is neither a string nor a function

– m_upper is not a real number

– m_lower is not a real number

– postMS is not a real number

• ValueError

– age < 0

– built-in IMF is not recognized

– m_upper <= 0

– m_lower <= 0

– m_lower >= m_upper

4.2. Package Contents 43

VICE, Release 1.1.0

Example Code

>>> vice.main_sequence_mass_fraction(1)
0.5815004968281556

>>> vice.main_sequence_mass_fraction(2)
0.5445877675278488

>>> vice.main_sequence_mass_fraction(3)
0.5219564300200146

vice.single_stellar_population

Simulate the nucleosynthesis of a given element from a single star cluster of given mass and metallicity. This does not
take into account galactic evolution - whether or not it is depleted from inflows or ejected in winds is not considered.
Only the mass of the given element produced by the star cluster is calculated.

Signature: vice.single_stellar_population(element, mstar = 1.0e+06, Z = 0.014, time = 10, dt = 0.01, m_upper = 100,
m_lower = 0.08, postMS = 0.1, IMF = “kroupa”, RIa = “plaw”, delay = 0.15)

Parameters

element [str [case-insensitive]] The symbol of the element to simulate the enrichment for.

mstar [real number [default][1.0e+06]] The birth mass of the star cluster in solar masses.

Z [real number [default][0.014]] The metallicity by mass of the stars in the cluster.

time [real number [default][10]] The amount of time in Gyr to run the simulation for

dt [real number [default][0.01]] The size of each timestep in Gyr

m_upper [real number [default][100]] The upper mass limit on star formation in solar masses.

m_lower [real number [default][0.08]] The lower mass limit on star formation in solar masses.

postMS [real number [default][0.1]] The ratio of a star’s post main sequence lifetime to its main sequence lifetime.

New in version 1.1.0.

IMF [str [case-insensitive] [default][“kroupa”]] The stellar initial mass function (IMF) to assume. Strings denote
built-in IMFs.

Recognized built-in IMFs:

• Kroupa1

• Salpeter2

RIa [str [case-insensitive] or <function> [default][“plaw”]] The delay-time distribution for type Ia supernovae to
adopt. Strings denote built-in distributions. Functions must accept only one numerical parameter and will be
interpreted as a custom, arbitrary delay-time distribution.

Recognized built-in distributions:

• “plaw”: 𝑅Ia ∼ 𝑡−1.1

• “exp”: 𝑅Ia ∼ 𝑒−𝑡/1.5 Gyr

1 Kroupa (2001), MNRAS, 231, 322
2 Salpeter (1955), ApJ, 121, 161

44 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Note: Functions do not need to return 0 at times smaller than the SN Ia minimum delay time.

Note: Functions do not need to be normalized. VICE will take care of this automatically.

delay [real number [default][0.15]] The minimum delay time following the formation of a single stellar population
before the onset of type Ia supernovae in Gyr.

agb_model [string [case-insensitive] [default][“cristallo11”]] A keyword denoting which table of nucleosynthetic
yields from AGB stars to adopt.

Recognized Keywords:

• “cristallo11”3

• “karakas10”4

Returns

mass [list] The net mass of the element in solar mass produced by the star cluster at each timestep.

times [list] The times in Gyr corresponding to each mass yield.

Raises

• ValueError

– The element is not built into VICE.

– mstar < 0

– Z < 0

– time < 0 or time > 15 [VICE does not simulate enrichment on timescales significantly longer than the
age of the universe]

– dt < 0

– m_upper < 0

– m_lower < 0

– m_lower > m_upper

– postMS < 0 or > 1

– built-in IMF is not recognized

– delay < 0

– agb_model is not built into VICE

• LookupError

– agb_model == “karakas10” and the atomic number of the element is larger than 29. The Karakas
(2010), MNRAS, 403, 1413 study did not report yields for elements heavier than nickel.

• ArithmeticError
3 Cristallo et al. (2011), ApJS, 197, 17
4 Karakas (2010), MNRAS, 403, 1413

4.2. Package Contents 45

VICE, Release 1.1.0

– A functional RIa evaluated to a negative value, inf, or NaN at any given timestep.

• IOError [Only occurs if VICE’s file structure has been modified]

– The AGB yield file is not found.

Example Code

>>> mass, times = vice.single_stellar_population("sr", Z = 0.008)
>>> mass[-1]

0.04808964406448721
>>> mass, times = vice.single_stellar_population("fe")
>>> mass[-1]

2679.816051685778

vice.dataframe

The VICE Dataframe: base class

Provides a means of storing and accessing data with both case-insensitive strings and integers, allowing both indexing
and calling.

Signature: vice.dataframe(frame)

Parameters

frame [dict] A python dictionary to construct the dataframe from. Keys must all be of type str.

Raises

• TypeError

– frame has a key that is not of type str

Allowed Data Types

• Keys

– str [case-insensitive] [column label] A label given to the stored quantity (or list/array thereof).

• Values

– All

46 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Indexing

• str [case-insensitive] [column label] A label given to the quantities stored.

• int [index for values which are array-like.] If all values stored by the dataframe are array-like, the i’th value of
all of them can be obtained by indexing the dataframe with i.

Calling

The VICE dataframe and all subclasses can be called rather than indexed to achieve the same result.

Functions

• keys

• todict

• remove

• filter

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example["A"]
[1, 2, 3]
>>> example("a")
[1, 2, 3]
>>> example[0]
vice.dataframe{

a --------------> 1
b --------------> 4
c --------------> 7

}
>>> example.keys()
['a', 'b', 'c']
>>> example.todict()
{'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}
>>> example.filter("c", "<", 9)
vice.dataframe{

a --------------> [1, 2]
b --------------> [4, 5]
c --------------> [7, 8]

}

4.2. Package Contents 47

VICE, Release 1.1.0

vice.dataframe.keys

Returns the keys to the dataframe in their lower-case format

Signature: x.keys()

Parameters

x [dataframe] An instance of this class

Returns

keys [list] A list of lower-case strings which can be used to access the values stored in this dataframe.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.keys()
['a', 'b', 'c']

vice.dataframe.todict

Returns the dataframe as a standard python dictionary

Signature: x.todict()

Parameters

x [dataframe] An instance of this class

48 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Returns

copy [dict] A dictionary copy of the dataframe.

Note: Python dictionaries are case-sensitive, and are thus less flexible than this class.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.todict()
{'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}

vice.dataframe.remove

Remove an element of the dataframe

Signature: x.remove(key)

New in version 1.1.0.

Parameters

x [dataframe] An instance of this class

key [str [case-insensitive]] The key to remove from the dataframe

Raises

• KeyError

– Key is not in the dataframe

4.2. Package Contents 49

VICE, Release 1.1.0

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.remove("a")
vice.dataframe{

b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.remove("b")
vice.dataframe{

c --------------> [7, 8, 9]
}

vice.dataframe.filter

Obtain a copy of the dataframe whose elements satisfy a filter. Only applies to dataframes whose values are all array-
like.

Signature: x.filter(key, relation, value)

New in version 1.1.0.

Parameters

x [dataframe] An instance of this class

key [str [case-insensitive]] The dataframe key to filter based on

relation [str] Either ‘<’, ‘<=’, ‘=’, ‘==’, ‘!=’, ‘>=’, or ‘>’, denoting the relation to filter based on.

value [real number] The value to filter based on.

Returns

filtered [dataframe] A dataframe whose elements are only those which satisfy the specified filter. This will always
be an instance of the base class, even if the function called with an instance of a derived class.

50 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Raises

• KeyError

– Key is not in the dataframe

• ValueError

– Invalid relation

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.filter("a", "=", 2)
vice.dataframe{

a --------------> [2]
b --------------> [5]
c --------------> [8]

}
>>> example.filter("c", "<=", 8)
vice.dataframe{

a --------------> [1, 2]
b --------------> [4, 5]
c --------------> [7, 8]

}

vice.core.dataframe.builtin_elemental_data

The VICE dataframe: derived class (inherits from noncustomizable)

Stores persistent data for each element.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– Any (cannot be modified)

4.2. Package Contents 51

VICE, Release 1.1.0

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

Built-In Instances

• vice.atomic_number The atomic number (protons only) of each element.

• vice.primordial The primordial abundance by mass 𝑍 of each element following big bang nucleosynthesis.
This is zero for all elements with the exception of helium, which is assigned the standard model value of
𝑌p = 0.24672 ± 0.00017123.

New in version 1.1.0.

• vice.solar_z The abundance by mass of each element in the sun. This is adopted from Asplund et al. (2009)4.

• vice.sources The dominant astrophysical enrichment channels of each element. This is adopted from Johnson
(2019)5.

• vice.stable_isotopes The mass number (protons + neutrons) of the stable isotopes of each element.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.primordial['c']

0
>>> vice.solar_z['c']

0.00236
>>> vice.sources['c']

["CCSNE", "AGB"]
>>> vice.stable_isotopes['c']

[12, 13]

Signature: vice.core.dataframe.builtin_elemental_data(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
4 Asplund et al. (2009), ARA&A, 47, 481
5 Johnson (2019), Science, 363, 474

52 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.core.dataframe.elemental_settings

The VICE dataframe: derived class (inherits from base)

Stores data on an element-by-element basis.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the
periodic table.

• Values

– All

Indexing

• str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the periodic table.

Functions

• keys

• todict

Example Code

>>> import vice
>>> vice.yields.ccsne.settings['o'] = 0.01
>>> vice.yields.ccsne.settings['fe'] = 0.0012
>>> vice.yields.sneia.settings['o'] = 0.0
>>> vice.yields.sneia.settings['fe'] = 0.0017

Signature: vice.core.dataframe.elemental_settings(frame)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

4.2. Package Contents 53

VICE, Release 1.1.0

vice.core.dataframe.evolutionary_settings

The VICE dataframe: derived class (inherits from elemental_settings)

Stores simulation parameters on an element-by-element basis which may or may not vary with time.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– real number A constant which does not vary with time.

– <function> Must accept time in Gyr as the only parameter, and return the value of this parameter at
that time for a given element.

Indexing

• str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the periodic table.

Functions

• keys

• todict

Example Code

>>> import vice
>>> example = vice.singlezone(name = "example", Zin = {})
>>> example.Zin['o'] = 0.002
>>> example.Zin['fe'] = lambda t: 0.001 * (t / 3)

Signature: vice.core.dataframe.evolutionary_settings(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

54 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

vice.core.dataframe.fromfile

The VICE dataframe: derived class (inherits from base)

Provides a means of storing and accessing generic simulation output. Fromfile objects are created by various functions
which read in simulation output (e.g. vice.mdf).

Attributes

name [str] The name of the file that the data was pulled from.

size [tuple] Contains two integers: the (length, width) of the data.

Allowed Data Types

• Keys

– str [case-insensitive] [the physical quantity] A name given to the physical quantity to take from or
store with the output.

Note: VICE automatically assigns keys to quantities in the output which cannot be overridden.

• Values

– array-like Must have the same length as the values of the dataframe obtained from the output file.

Indexing

• int : A given line-number of the output. Returns a dataframe with the same keys, but whose values are taken
only from the specified line of output.

• str [case-insensitive] : labels of the lists of quantities stored.

For MDF objects, the following are assigned automatically by VICE when reading in the output and will not be
re-assigned:

– ‘bin_edge_left’ : Lower bin edges of the distribution

– ‘bin_edge_right’ : Upper bin edges of the distribution

– ‘dn/d[x/h]’ : The value of the probability distribution function of stars in their [X/H] logarithmic abundance.

– ‘dn/d[x/y]’ : The value of the probability distribution function of stars in their [X/Y] logarithmic abundance
ratio.

4.2. Package Contents 55

VICE, Release 1.1.0

Functions

• keys

• todict

• filter

Example Code

>>> import vice
>>> example = vice.mdf("example")
>>> example.keys()

['bin_edge_left',
'bin_edge_right',
'dn/d[fe/h]',
'dn/d[sr/h]',
'dn/d[o/h]',
'dn/d[sr/fe]',
'dn/d[o/fe]',
'dn/d[o/sr]']

>>> example["bin_edge_left"][:10]
[-3.0, -2.95, -2.9, -2.85, -2.8, -2.75, -2.7, -2.65, -2.6, -2.55]

>>> example[60]
vice.dataframe{

bin_edge_left --> 0.0
bin_edge_right -> 0.05
dn/d[fe/h] -----> 0.0
dn/d[sr/h] -----> 0.0
dn/d[o/h] ------> 0.0
dn/d[sr/fe] ----> 0.06001488
dn/d[o/fe] -----> 0.4337209
dn/d[o/sr] -----> 0.0

}

Signature: vice.core.dataframe.fromfile(filename = None, labels = None, adopted_solar_z = None)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe. Fromfile objects
are created by various functions which read in simulation output (e.g. vice.mdf).

Parameters

filename [str [default][None]] The name of the ascii file containing the output.

list [list of strings [default][None]] The strings to assign the column labels.

adopted_solar_z [real number [default][None]] The metallicity by mass of the sun 𝑍⊙ adopted in the simulation.

56 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.core.dataframe.fromfile.name

Type : str

The name of the file that this data was read from.

Example Code

>>> import vice
>>> example = vice.mdf("example")
>>> example.name

'example.vice/mdf.out'

vice.core.dataframe.fromfile.size

Type : tuple

Contains two integers: the (length, width) of the dataframe.

Example Code

>>> import vice
>>> example = vice.mdf("example")
>>> example.size

(80, 8)

vice.core.dataframe.noncustomizable

The VICE dataframe: derived class (inherits from elemental_settings)

Stores data on an element-by-element basis that is not modifiable by the user.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the
periodic table.

• Values

– All

4.2. Package Contents 57

VICE, Release 1.1.0

Indexing

• str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the periodic table.

Functions

• keys

• todict

Example Code

>>> import vice
>>> vice.atomic_number['c']

6
>>> vice.solar_z['c']

0.00236

Signature: vice.core.dataframe.noncustomizable(frame)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically.

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

vice.core.dataframe.history

The VICE dataframe: derived class (inherits from fromfile)

Provides a means of storing and accessing the time-evolution of the interstellar medium from the output of a singlezone
object. History objects can be created from VICE outputs by calling vice.history.

Attributes

name [str] The name of the file that the data was pulled from.

size [tuple] Contains two integers: the (length, width) of the data.

58 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Allowed Data Types

• Keys

– str [case-insensitive] [the physical quantity.] A name given to the physical quantity to take from or
store with the output.

Note: VICE automatically assigns keys to quantities in the output which cannot be overridden.
A list of them can be found here under Indexing.

• Values

– array-like Must have the same length as the values of the dataframe obtained from the output file.

Indexing

• int [A given line-number of output.] Returns a dataframe with the same keys, but whose values are taken only
from the specified line of output.

• str [case-insensitive] [labels of the lists of quantities stored.] The following are assigned automatically by
VICE when reading in an output file and will not be re-assigned:

– ‘time’ : Time in Gyr from the start of the simulation.

– ‘lookback’ : Lookback time in Gyr from the end of the simulation.

– ‘mgas’ : The mass of the interstellar medium in 𝑀⊙

– ‘sfr’ : Star formation rate in 𝑀⊙yr−1

– ‘ifr’ : Infall rate in 𝑀⊙yr−1

– ‘ofr’ : Outflow rate in 𝑀⊙yr−1

– ‘eta_0’ : The user-specified value of the mass-loading parameter 𝜂, independent of the smoothing
timescale 𝜏⋆ employed in the simulation.

– ‘r_eff’ : The effective recycling parameter 𝑀̇r/𝑀̇⋆.

– ‘z_in(x)’ : The inflow metallicity by mass 𝑍 of the element 𝑥.

– ‘z_out(x)’ : The outflow metallicity by mass 𝑍 of the element 𝑥.

– ‘mass(x)’ : The mass of the element 𝑥 in the interstellar medium.

– ‘z(x)’ : The metallicity by mass 𝑍 of the element 𝑥 in the interstellar medium.

– ‘[x/h]’ : The logarithmic abundance relative to the sun of the element 𝑥, given by log10(𝑍𝑥/𝑍𝑥,⊙).

– ‘[y/x]’ : The logarithmic abundance ratio relative to the sun between the elements 𝑦 and 𝑥, given by
log10(𝑍𝑦/𝑍𝑦,⊙) − log10(𝑍𝑥/𝑍𝑥,⊙).

– ‘z’ : The scaled total metallicity by mass 𝑍.

– ‘[m/h]’ : The scalled logarithmic metallicity relative to the sun, given by log10(𝑍/𝑍⊙).

Note: The scaled total metallicity by mass is defined by:

𝑍 = 𝑍⊙

∑︀
𝑖 𝑍𝑖∑︀

𝑖 𝑍𝑖,⊙

4.2. Package Contents 59

VICE, Release 1.1.0

where 𝑍⊙ is the metallicity of the sun adopted in the simulation, and 𝑍𝑖 is the abundance by mass of the
i’th element. This scaling is employed so that an accurate estimation of the total metallicity can be obtained
without every element’s abundance information.

Note: The scaled logarithmic metallicity is defined from the scaled total metallcity by mass according to:

[𝑀/𝐻] = log10

(︂
𝑍

𝑍⊙

)︂

Functions

• keys

• todict

• filter

Example Code

>>> example = vice.history("example")
>>> example.keys()

['time',
'mgas',
'mstar',
'sfr',
'ifr',
'ofr',
'eta_0',
'r_eff',
'z_in(fe)',
'z_in(sr)',
'z_in(o)',
'z_out(fe)',
'z_out(sr)',
'z_out(o)',
'mass(fe)',
'mass(sr)',
'mass(o)',
'z(fe)',
'z(sr)',
'z(o)',
'[fe/h]',
'[sr/h]',
'[o/h]',
'[sr/fe]',
'[o/fe]',
'[o/sr]',
'z',
'[m/h]',

(continues on next page)

60 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

(continued from previous page)

'lookback']
>>> example[100]

vice.dataframe{
time -----------> 1.0
mgas -----------> 5795119000.0
mstar ----------> 2001106000.0
sfr ------------> 2.897559
ifr ------------> 9.1
ofr ------------> 7.243899
eta_0 ----------> 2.5
r_eff ----------> 0.3534769
z_in(fe) -------> 0.0
z_in(sr) -------> 0.0
z_in(o) --------> 0.0
z_out(fe) ------> 0.0002769056
z_out(sr) ------> 3.700754e-09
z_out(o) -------> 0.001404602
mass(fe) -------> 1604701.0
mass(sr) -------> 21.44631
mass(o) --------> 8139837.0
z(fe) ----------> 0.0002769056166059748
z(sr) ----------> 3.700754031107903e-09
z(o) -----------> 0.0014046022178319376
[fe/h] ---------> -0.6682579454664828
[sr/h] ---------> -1.1074881208001155
[o/h] ----------> -0.6098426789720387
[sr/fe] --------> -0.43923017533363273
[o/fe] ---------> 0.05841526649444406
[o/sr] ---------> 0.4976454418280768
z --------------> 0.0033582028978416337
[m/h] ----------> -0.6200211036287412
lookback -------> 9.0

}

Signature: vice.core.dataframe.history(filename = None, adopted_solar_z = None, labels = None)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe. To obtain a history
object from a VICE output, simply call vice.history.

Parameters

filename [str [default][None]] The name of the ascii file containing the history output.

adopted_solar_z [real number [default][None]] The metallicity by mass of the sun 𝑍⊙ adopted in the simulation.

labels [list of strings [default][None]] The strings to assign the column labels.

4.2. Package Contents 61

VICE, Release 1.1.0

vice.core.dataframe.saved_yields

The VICE dataframe: derived class (inherits from noncustomizable)

Stores nucleosynthetic yield settings that were used in simulation. This is only a saved copy and is not modifiable by
the user.

See also:

• vice.core.dataframe.yield_settings

• vice.yields.ccsne.settings

• vice.yields.sneia.settings

• vice.yields.agb.settings

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the
periodic table.

• Values

– real number A constant yield which does not vary with stellar mass or metallicity.

– <function> A function of one variable describing the yield as a function of metallicity 𝑍. In this
version of VICE, this is only applicable to CCSN yields.

Indexing

• str [case-insensitive] [elemental symbol] The symbol of a chemical element as it appears on the periodic table.

Functions

• keys

• todict

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.agb_yields

vice.dataframe{
fe -------------> cristallo11
o --------------> cristallo11
sr -------------> cristallo11

}
>>> example.ccsne_yields

vice.dataframe{
fe -------------> 0.000246

(continues on next page)

62 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

(continued from previous page)

o --------------> 0.00564
sr -------------> 1.34e-08

}

Signature: vice.core.dataframe.saved_yields(frame, name)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe and instead use
the base class. Instances of this class are created automatically by the output object.

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

vice.yields

Nucleosynthetic Yield Tools

Each sub-package stores built-in yield tables and user-presets for each element from each enrichment channel.

Signature: vice.yields

Contains

agb [<package>] Yields from asymptotic giant branch stars

ccsne [<package>] Yields from core collapse supernovae

sneia [<package>] Yields from type Ia supernovae

presets [<package>] Yield settings presets

test [<function>] Run the tests on this package

Notes

The yield tables built into VICE do not include any treatment of radioactive isotopes. Equations are evaluated and
tables are returned counting only the total mass yield of stable isotopes. In the case of elements with a significant
nucleosynthetic contribution from radioactive decay products, the values returned from the functions in this module
should be interpreted as lower bounds rather than estimates of the true yield.

4.2. Package Contents 63

VICE, Release 1.1.0

vice.yields.agb

Asymptotic Giant Branch (AGB) Star Nucleosynthetic Yield Tools

Analyze built-in yield tables and modify yield settings for use in simulations. This package provides tables from the
following nucleosynthetic yield studies:

• Cristallo et al. (2011)1

• Karakas (2010)2

Contents

grid [<function>] Return the stellar mass-metallicity grid of fractional nucleosynthetic yields for given element and
study

vice.yields.agb.grid

Obtain the stellar mass-metallicity grid of fractional net yields from asymptotic giant branch stars published in a nu-
cleosynthesis study.

Signature: vice.yields.agb.grid(element, study = “cristallo11”)

Parameters

element [str [case-insensitive]] The symbol of the element to obtain the yield grid for.

study [str [case-insensitive] [default][“cristallo11”]] A keyword denoting which study to pull the yield table from.

Recognized Keywords:

• “cristallo11”: Cristallo et al. (2011)1

• “karakas10”: Karakas (2010)2

Returns

grid [tuple (2-D)] A tuple of tuples containing the yield grid. The first axis is the stellar mass, and second is the
metallicity

masses [tuple] The masses in units of 𝑀⊙ that the yield grid is sampled on.

z [tuple] The metallicities by mass 𝑍 that the yield grid is sample on.
1 Cristallo et al. (2011), ApJS, 197, 17
2 Karakas (2010), MNRAS, 403, 1413
1 Cristallo et al. (2011), ApJS, 197, 17
2 Karakas (2010), MNRAS, 403, 1413

64 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Raises

• ValueError

– The study or the element are not built into VICE

• LookupError

– study == "karakas10" and the atomic number of the element is ≥ 29. The Karakas (2010) study
did not report yields for elements heavier the nickel.

• IOError [Occur’s only if VICE’s file structure has been modified]

– The parameters passed to this function are allowed but the data file is not found.

Notes

Note: The nucleosynthetic yield tables built into VICE do not include any treatment of radioactive isotopes. The yield
tables returned by this function will not include what the specified study reported for radioactive isotopes. In the case
of elements with a significant nucleosynthetic contribution from radioactive decay products, the values returned from
this function should be interpreted as lower bounds rather than estimates of the true yield.

Example Code

>>> y, m, z = vice.agb_yield_grid("sr")
>>> m

(1.3, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0)
>>> z

(0.0001, 0.0003, 0.001, 0.002, 0.003, 0.006, 0.008, 0.01, 0.014, 0.02)
>>> # the fractional yield from 1.3 Msun stars at Z = 0.001
>>> y[0][2]

2.32254e-09

vice.yields.ccsne

Core Collapse Supernovae (CCSNe) Nucleosynthetic Yield Tools

Calculate IMF-averaged yields and modify yield settings for use in simulations. This package provides tables from the
following nucleosynthetic yield studies:

• Limongi & Chieffi (2018)1

• Chieffi & Limongi (2013)2

• Chieffi & Limongi (2004)3

• Woosley & Weaver (1995)4

1 Limongi & Chieffi (2018), ApJS, 237, 13
2 Chieffi & Limongi (2013), ApJ, 764, 21
3 Chieffi & Limongi (2004), ApJ, 608, 405
4 Woosley & Weaver (1995), ApJ, 101, 181

4.2. Package Contents 65

VICE, Release 1.1.0

Contents

fractional [<function>] Calculate an IMF-averaged yield for a given element.

settings [dataframe] Stores current settings for these yields.

LC18 [yield preset] Sets yields according to the Limongi & Chieffi (2018) study.

CL13 [yield preset] Sets yields according to the Chieffi & Limongi (2013) study.

CL04 [yield preset] Sets yields according to the Chieffi & Limongi (2004) study.

WW95 [yield preset] Sets yields according to the Woosley & Weaver (1995) study.

vice.yields.ccsne.fractional

Calculate an IMF-integrated fractional net nucleosynthetic yield of a given element from core-collapse supernovae.

Signature: vice.yields.ccsne.fractional(element, study = “LC18”, MoverH = 0, rotation = 0, IMF = “kroupa”, method
= “simpson”, m_lower = 0.08, m_upper = 100, tolerance = 1.0e-03, Nmin = 64, Nmax = 2.0e+08)

Parameters

element [str [case-insensitive]] The symbol of the element to calculate the IMF-integrated fractional yield for.

study [str [case-insensitive] [default][“LC18”]] A keyword denoting which study to adopt the yields from

Keywords and their Associated Studies:

• “LC18”: Limongi & Chieffi (2018)1

• “CL13”: Chieffi & Limongi (2013)2

• “CL04”: Chieffi & Limongi (2004)3

• “WW95”: Woosley & Weaver (1995)4

MoverH [real number [default][0]] The total metallicity [M/H] of the exploding stars. There are only a handful of
metallicities recognized by each study.

Keywords and their Associated Metallicities:

• “LC18”: [M/H] = -3, -2, -1, 0

• “CL13”: [M/H] = 0

• “CL04”: [M/H] = -inf, -4, -2, -1, -0.37, 0.15

• “WW95”: [M/H] = -inf, -4, -2, -1, 0

rotation [real number [default][0]] The rotational velocity of the exploding stars in km/s. There are only a handful of
rotational velocities recognized by each study.

Keywords and their Associated Rotational Velocities:

• “LC18”: v = 0, 150, 300

• “CL13”: v = 0, 300
1 Limongi & Chieffi (2018), ApJS, 237, 13
2 Chieffi & Limongi (2013), ApJ, 764, 21
3 Chieffi & Limongi (2004), ApJ, 608, 405
4 Woosley & Weaver (1995), ApJ, 101, 181

66 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

• “CL04”: v = 0

• “WW95”: v = 0

IMF [str [case-insensitive] [default][“kroupa”]] The stellar initial mass function (IMF) to assume. Strings denote
built-in IMFs, which must be either “Kroupa”5 or “Salpeter”6.

method [str [case-insensitive] [default][“simpson”]] The method of quadrature.

Recognized Methods:

• “simpson”

• “trapezoid”

• “midpoint”

• “euler”

Note: These methods of quadrature are implemented according to Chapter 4 of Press, Teukolsky, Vetterling &
Flannery (2007)7.

m_lower [real number [default][0.08]] The lower mass limit on star formation in 𝑀⊙.

m_upper [real number [default][100]] The upper mass limit on star formation in 𝑀⊙.

tolerance [real number [default][0.001]] The numerical tolerance. VICE will not return a result until the fractional
change between two successive integrations is smaller than this value.

Nmin [real number [default][64]] The minimum number of bins in quadrature.

Nmax [real number [default][2.0e+08]] The maximum number of bins in quadrature. Included as a failsafe against
solutions that din’t converge numerically.

Returns

y [real number] The numerically calculated yield.

error [real number] The estimated numerical error.

Raises

• ValueError

– The element is not built into VICE

– The study is not built into VICE

– The tolerance is not between 0 and 1

– m_lower > m_upper

– Custom IMF does not accept exactly 1 positional argument

– Built-in IMF is not recognized

– The method of quadrature is not built into VICE
5 Kroupa (2001), MNRAS, 231, 322
6 Salpeter (1955), ApJ, 121, 161
7 Press, Teukolsky, Vetterling & Flannery (2007), Numerical Recipes, Cambridge University Press

4.2. Package Contents 67

VICE, Release 1.1.0

– Nmin > Nmax

• LookupError

– The study did not report yields at the specified metallicity

– The study did not report yields at the specified rotational velocity.

• ScienceWarning

– m_upper is larger than the largest mass on the grid reported by the specified study. VICE extrapolates
to high masses in this case.

– study is either “CL04” or “CL13” and the atomic number of the element is between 24 and 28 (inclu-
sive). VICE warns against adopting these yields for iron peak elements.

– Numerical quadrature did not converge within the maximum number of allowed quadrature bins to
within the specified tolerance.

Notes

This function evaluates the solution to the following equation.

𝑦CC
𝑥

∫︀ 𝑢

8
𝑚𝑥

𝑑𝑁
𝑑𝑚𝑑𝑚∫︀ 𝑢

𝑙
𝑚𝑥

𝑑𝑁
𝑑𝑚𝑑𝑚

Note: The nucleosynthetic yield tables built into VICE do not include any treatment of radioactive isotopes. The
above equation is evaluated directly from the total mass yield of stable isotopes only. In this regard, if any element
has a significant contribution to its nucleosynthesis from radioactive decay products, then the values returned from this
function should be interpreted as lower bounds rather than estimates of the true nucleosynthetic yield.

Example Code

>>> y, err = vice.yields.ccsne.fractional("o")
>>> y

0.004859197708207693
>>> err

5.07267151987336e-06
>>> y, err = vice.yields.ccsne.fractional("mg", study = "CL13")
>>> y

0.0009939371276697314

vice.yields.ccsne.settings

The VICE dataframe: derived class (inherits from elemental_settings)

Stores the current nucleosynthetic yield settings for different enrichment channels.

Note: Modifying yield settings through these dataframes is equivalent to going through the vice.elements module.

68 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– real number : denote a constant, metallicity-independent yield.

– <function> [Mathematical function describing the yield.] Must accept the metallicity by mass 𝑍 as
the only parameter. In this version of VICE, this is only allowed for CCSN yields.

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

• restore_defaults

• factory_settings

• save_defaults

Built-In Instances

• vice.yields.ccsne.settings The user’s current nucleosynthetic yield settings for core collapse supernovae.

• vice.yields.sneia.settings The user’s current nucleosynthetic yield settings for type Ia supernovae.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"] = 0.001
>>> example["FE"] = 0.0012
>>> def f(z):

return 0.005 + 0.002 * (z / 0.014)
>>> example["Fe"] = f

Signature: vice.core.dataframe.yield_settings(frame, name, allow_funcs, config_field)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe.

4.2. Package Contents 69

VICE, Release 1.1.0

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

allow_funcs [bool] If True, functional attributes will be allowed.

config_field [str] The name of the “.config” file that is stored in VICE’s install directory whenever the user saved
new default yield settings.

vice.yields.ccsne.settings.keys

Returns the keys to the dataframe in their lower-case format

Signature: x.keys()

Parameters

x [dataframe] An instance of this class

Returns

keys [list] A list of lower-case strings which can be used to access the values stored in this dataframe.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.keys()
['a', 'b', 'c']

70 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.yields.ccsne.settings.todict

Returns the dataframe as a standard python dictionary

Signature: x.todict()

Parameters

x [dataframe] An instance of this class

Returns

copy [dict] A dictionary copy of the dataframe.

Note: Python dictionaries are case-sensitive, and are thus less flexible than this class.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.todict()
{'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}

vice.yields.ccsne.settings.restore_defaults

Restores the dataframe to its default parameters.

Signature: x.restore_defaults()

4.2. Package Contents 71

VICE, Release 1.1.0

Parameters

x [yield_settings] An instance of this class.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.000246
>>> example["fe"] = 0.001
>>> example.restore_defaults()
>>> example["fe"]
0.000246

vice.yields.ccsne.settings.factory_settings

Restores the dataframe to its factory defaults.

Signature: x.factory_settings()

Tip: To revert your nucleosynthetic yield settings back to the production defaults permanently, simply call x.
save_defaults() immediately following this function.

Parameters

x [yield_settings] An instance of this class

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.001 # <--- previously saved preset
>>> example.factory_settings()
0.000246

vice.yields.ccsne.settings.save_defaults

Saves the current dataframe settings as the default values.

Signature: x.save_defaults()

72 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Parameters

x [yield_settings] An instance of this class.

Note: Saving functional yields requires the package dill, an extension to pickle in the python standard library. It is
recommended that VICE users install dill >= 0.2.0.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"] = 0.001
>>> example.save_defaults()

After re-launching the python interpreter:

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.001

vice.yields.ccsne.WW95

Woosley & Weaver (1995), ApJ, 101, 181 core collapse supernova (CCSN) yields

Signature: from vice.yields.ccsne import WW95

Importing this module will automatically set the CCSN yield settings for all elements to the IMF-averaged yields
calculated with the Woosley & Weaver (1995) yield table for [M/H] = 0 stars. This will adopt an upper mass limit of
40 𝑀⊙.

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: This module is not imported with a simple import vice statement.

Contents

set_params [<function>] Update the parameters with which the yields are calculated.

4.2. Package Contents 73

https://pypi.org/project/dill/
https://pypi.org/project/dill/

VICE, Release 1.1.0

vice.yields.ccsne.WW95.set_params

Update the parameters with which the yields are calculated from the Woosley & Weaver (1995)1 data.

Signature: vice.yields.ccsne.WW95.set_params(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.ccsne.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “WW95” when called from this module.

Other exceptions are raised by vice.yields.ccsne.fractional.

Example Code

>>> import vice
>>> from vice.yields.ccsne import WW95
>>> WW95.set_params(m_lower = 0.3, m_upper = 45, IMF = "salpeter")

See also:

vice.yields.ccsne.fractional

vice.yields.ccsne.CL04

Chieffi & Limongi (2014), ApJ, 608, 405 core collapse supernova (CCSN) yields

Signature: from vice.yields.ccsne import CL04

Importing this module will automatically set the CCSN yield settings for all elements to the IMF-averaged yields
calculated with the Chieffi & Limongi (2004) yield table for [M/H] = 0.15 stars. This will adopt an upper mass limit
of 35 𝑀⊙.

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: [M/H] = 0.15 corresponds to Z = 0.02 if the solar abundance is Z = 0.014 (Asplund et al. 2009)1.

Note: This module is not imported with a simple import vice statement.

1 Woosley & Weaver (1995), ApJ, 101, 181
1 Asplund et al. (2009), ARA&A, 47, 481

74 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Contents

set_params [<function>] Update the parameters with which the yields are calculated.

vice.yields.ccsne.CL04.set_params

Update the parameter with which the yields are calculated from the Chieffi & limongi (2004)1 data.

Signature: vice.yields.ccsne.CL04.set_params(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.ccsne.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “CL04” when called from this module.

Other exceptions are raised by vice.yields.ccsne.fractional.

Example Code

>>> import vice
>>> from vice.yields.ccsne import CL04
>>> CL04.set_params(m_lower = 0.3, m_upper = 40, IMF = "salpeter")

See also:

vice.yields.ccsne.fractional

vice.yields.ccsne.CL13

Chieffi & Limongi (2013), ApJ, 764, 21 core collapse supernova (CCSN) yields

Signature: from vice.yields.ccsne import CL13

Importing this module will automatically set the CCSN yield settings for all elements to the IMF-averaged yields
calculated with the Chieffi & Limongi (2013) yield table for [M/H] = 0 stars. This will adopt an upper mass limit of
100 𝑀⊙.

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: This module is not imported with a simple import vice statement.

1 Chieffi & Limongi (2004), ApJ, 608, 405

4.2. Package Contents 75

VICE, Release 1.1.0

Contents

set_params [<function>] Update the parameters with which the yields are calculated.

vice.yields.ccsne.CL13.set_params

Update the parameters with which the yields are calculated from the Chieffi & Limongi (2013)1 data.

Signature: vice.yields.ccsne.CL13.set_params(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.ccsne.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “CL13” when called from this module.

Other exceptions are raised by vice.yields.ccsne.fractional.

Example Code

>>> import vice
>>> from vice.yields.ccsne import CL13
>>> CL13.set_params(m_lower = 0.3, m_upper = 40, IMF = "salpeter")

See also:

vice.yields.ccsne.fractional

vice.yields.ccsne.LC18

Limongi & Chieffi (2018), ApJS, 237, 13 core collapse supernova (CCSN) yields

Signature: from vice.yields.ccsne import LC18

Importing this module will automatically set the CCSN yield settings for all elements to the IMF-averaged yields
calculated with the Limongi & Chieffi (2018) yield table for [M/H] = 0 stars. This will adopt an upper mass limit of
100 𝑀⊙.

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: This module is not imported with a simple import vice statement.

1 Chieffi & Limongi (2013), ApJ, 764, 21

76 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Contents

set_params [<function>] Update the parameters with which the yields are calculated

vice.yields.ccsne.LC18.set_params

Update the parameters with which the yields are calculated from the Limongi & Chieffi (2018)1 data.

Signature: vice.yields.ccsne.LC18.set_params(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.ccsne.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “LC18” when called from this module.

Other exceptions are raised by vice.yields.ccsne.fractional.

Example Code

>>> import vice
>>> from vice.yields.ccsne import LC18
>>> LC18.set_params(m_lower = 0.3, m_upper = 40, IMF = "salpeter")

See also:

vice.yields.ccsne.fractional

vice.yields.sneia

Type Ia Supernovae (SNe Ia) Nucleosynthetic Yield Tools

Calculate IMF-averaged yields and modify yield settings for use in simulations. This package provides tables from the
following nucleosynthetic yield studies:

• Seitenzahl et al. (2013)1

• Iwamoto et al. (1999)2

1 Limongi & Chieffi (2018), ApJS, 237, 17
1 Seitenzahl et al. (2013), MNRAS, 429, 1156
2 Iwamoto et al. (1999), ApJ, 124, 439

4.2. Package Contents 77

VICE, Release 1.1.0

Contents

fractional [<function>] Calculate an IMF-averaged yield for a given element.

single [<function>] Look up the mass yield of a given element from a single type Ia supernova from a specified study.

settings [dataframe] Stores current settings for these yields.

seitenzahl13 [yield preset] Sets the yields according to the Seitenzahl et al. (2013) study.

iwamoto99 [yield preset] Sets the yields according to the Iwamoto et al. (1999) study.

vice.yields.sneia.single

Lookup the mass yield of a given element from a single instance of a type Ia supernova (SN Ia) as determined by a
specified study and explosion model.

Signature: vice.yields.sneia.single(element, study = “seitenzahl13”, model = “N1”)

Parameters

element [str [case-insensitive]] The symbol of the element to look up the yield for.

study [str [case-insensitive] [default][“seitenzahl13”]] A keyword denoting which study to adopt the yield from

Keywords and their Associated Studies:

• “seitenzahl13”: Seitenzahl et al. (2013)1

• “iwamoto99”: Iwamoto et al. (1999)2

model [str [case-insensitive] [default][N1]] A keyword denoting the explosion model from the associated study to
adopt.

Keywords and their Associated Models:

• “seitenzahl13” : N1, N3, N5, N10, N20, N40, N100H, N100, N100L, N150, N200, N300C, N1600,
N1600C, N100_Z0.5, N100_Z0.1, N100_Z0.01

• “iwamoto99” : W7, W70, WDD1, WDD2, WDD3, CDD1, CDD2

Returns

y [real number] The mass yield of the given element in 𝑀⊙ under the specified explosion model as reported by the
nucleosynthesis study.

1 Seitenzahl et al. (2013), MNRAS, 429, 1156
2 Iwamoto et al. (1999), ApJ, 124, 439

78 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Raises

• ValueError

– The element is not built into VICE

– The study is not built into VICE

• LookupError

– The study is recognized, but the model is not recognized for that particular study.

• IOError [Occurs only if VICE’s file structure has been modified]

– The data file is not found.

Notes

Note: The nucleosynthetic yield tables built into VICE do not include any treatment of radioactive isotopes. The
mass yield of the given element will be reported as the sum of stable isotopes only. In the case of elements with a
significant nucleosynthetic contribution from radioactive decay products, the values returned from this function should
be interpreted as lower bounds rather than estimates of the true yield.

Example Code

>>> import vice
>>> vice.yields.sneia.single("fe")

1.17390714
>>> vice.yields.sneia.single("fe", study = "iwamoto99", model = "W70")

0.77516
>>> vice.yields.sneia.single("ni", model = "n100l")

0.0391409000000526

See also:

vice.yields.sneia.fractional

vice.yields.sneia.fractional

Calculate an IMF-averaged fractional nucleosynthetic yield of a given element from type Ia supernovae.

Signature: vice.yields.sneia.fractional(element, study = “seitenzahl13”, model = “N1”, n = 2.2e-03)

4.2. Package Contents 79

VICE, Release 1.1.0

Parameters

element [str [case-insensitive]] The symbol of the element to calculate the yield for.

study [str [case-sensitive] [default][“seitenzahl13”]] A keyword denoting which study to adopt SN Ia mass yields
from.

Keywords and their Associated Studies:

• “seitenzahl13”: Seitenzahl et al. (2013)1

• “iwamoto99”: Iwamoto et al. (1999),2

model [str [case-insensitive] [default][“N1”]] The model from the associated study to adopt.

Keywords and their Associated Models:

• “seitenzahl13” : N1, N3, N5, N10, N20, N40, N100H, N100, N100L, N150, N200, N300C, N1600,
N1600C, N100_Z0.5, N100_Z0.1, N100_Z0.01

• “iwamoto99” : W7, W70, WDD1, WDD2, WDD3, CDD1, CDD2

n [real number [default][2.2e-03]] The average number of type Ia supernovae produced per unit stellar mass formed
𝑁Ia/𝑀⋆ in 𝑀−1

⊙ .

Note: The default value for this parameter is adopted from Maoz & Mannucci (2012)3.

Returns

y [real number] The IMF-averaged yield.

Note: Unlike vice.yields.ccsne.fractional, there is no associated numerical error with this function, because the solu-
tion is analytic.

Raises

• ValueError

– The element is not built into VICE.

– The study is not built into VICE.

– n < 0

• LookupError

– The model is not recognized for the given study.

• IOError [Occurs only if VICE’s file structure has been modified]

– The parameters passed to this function are allowed but the data file is not found.
1 Seitenzahl et al. (2013), MNRAS, 429, 1156
2 Iwamoto et al. (1999), ApJ, 124, 439
3 Maoz & Mannucci (2012), PASA, 29, 447

80 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Notes

This function evaluates the solution to the following equation:

𝑦Ia
𝑥 =

(︂
𝑁Ia

𝑀⋆

)︂
𝑀𝑥

where 𝑀𝑥 is the value returned by vice.yields.sneia.single, and 𝑁Ia/𝑀⋆ is specified by the parameter n.

Note: The nucleosynthetic yield tables built into VICE do not include any treatment of radioactive isotopes. This
function evaluates the solution to the above equation given the total mass yield of stable isotopes only. In the case of
elements with a significant nucleosynthetic contribution from radioactive decay products, the values returned from this
function should be interpreted as lower bounds rather than estimates of the true yield.

Example Code

>>> import vice
>>> vice.fractional_ia_yield("fe")

0.0025825957080000002
>>> vice.fractional_ia_yield("ca")

8.935489894764334e-06
>>> vice.fractional_ia_yield("ni")

0.00016576890932800003

vice.yields.sneia.settings

The VICE dataframe: derived class (inherits from elemental_settings)

Stores the current nucleosynthetic yield settings for different enrichment channels.

Note: Modifying yield settings through these dataframes is equivalent to going through the vice.elements module.

Allowed Data Types

• Keys

– str [case-insensitive] [elemental symbols] The symbols of the elements as they appear on the peri-
odic table.

• Values

– real number : denote a constant, metallicity-independent yield.

– <function> [Mathematical function describing the yield.] Must accept the metallicity by mass 𝑍 as
the only parameter. In this version of VICE, this is only allowed for CCSN yields.

4.2. Package Contents 81

VICE, Release 1.1.0

Indexing

• str [case-insensitive] [elemental symbols] Must be indexed by the symbol of an element recognized by VICE
as it appears on the periodic table.

Functions

• keys

• todict

• restore_defaults

• factory_settings

• save_defaults

Built-In Instances

• vice.yields.ccsne.settings The user’s current nucleosynthetic yield settings for core collapse supernovae.

• vice.yields.sneia.settings The user’s current nucleosynthetic yield settings for type Ia supernovae.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"] = 0.001
>>> example["FE"] = 0.0012
>>> def f(z):

return 0.005 + 0.002 * (z / 0.014)
>>> example["Fe"] = f

Signature: vice.core.dataframe.yield_settings(frame, name, allow_funcs, config_field)

Warning: Users should avoid creating new instances of derived classes of the VICE dataframe.

Parameters

frame [dict] A dictionary from which to construct the dataframe.

name [str] String denoting a description of the values stored in this dataframe.

allow_funcs [bool] If True, functional attributes will be allowed.

config_field [str] The name of the “.config” file that is stored in VICE’s install directory whenever the user saved
new default yield settings.

82 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.yields.sneia.settings.keys

Returns the keys to the dataframe in their lower-case format

Signature: x.keys()

Parameters

x [dataframe] An instance of this class

Returns

keys [list] A list of lower-case strings which can be used to access the values stored in this dataframe.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.keys()
['a', 'b', 'c']

vice.yields.sneia.settings.todict

Returns the dataframe as a standard python dictionary

Signature: x.todict()

Parameters

x [dataframe] An instance of this class

4.2. Package Contents 83

VICE, Release 1.1.0

Returns

copy [dict] A dictionary copy of the dataframe.

Note: Python dictionaries are case-sensitive, and are thus less flexible than this class.

Example Code

>>> import vice
>>> example = vice.dataframe({

"a": [1, 2, 3],
"b": [4, 5, 6],
"c": [7, 8, 9]})

>>> example
vice.dataframe{

a --------------> [1, 2, 3]
b --------------> [4, 5, 6]
c --------------> [7, 8, 9]

}
>>> example.todict()
{'a': [1, 2, 3], 'b': [4, 5, 6], 'c': [7, 8, 9]}

vice.yields.sneia.settings.restore_defaults

Restores the dataframe to its default parameters.

Signature: x.restore_defaults()

Parameters

x [yield_settings] An instance of this class.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.000246
>>> example["fe"] = 0.001
>>> example.restore_defaults()
>>> example["fe"]
0.000246

84 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.yields.sneia.settings.factory_settings

Restores the dataframe to its factory defaults.

Signature: x.factory_settings()

Tip: To revert your nucleosynthetic yield settings back to the production defaults permanently, simply call x.
save_defaults() immediately following this function.

Parameters

x [yield_settings] An instance of this class

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.001 # <--- previously saved preset
>>> example.factory_settings()
0.000246

vice.yields.sneia.settings.save_defaults

Saves the current dataframe settings as the default values.

Signature: x.save_defaults()

Parameters

x [yield_settings] An instance of this class.

Note: Saving functional yields requires the package dill, an extension to pickle in the python standard library. It is
recommended that VICE users install dill >= 0.2.0.

Example Code

>>> from vice.yields.ccsne import settings as example
>>> example["fe"] = 0.001
>>> example.save_defaults()

After re-launching the python interpreter:

>>> from vice.yields.ccsne import settings as example
>>> example["fe"]
0.001

4.2. Package Contents 85

https://pypi.org/project/dill/
https://pypi.org/project/dill/

VICE, Release 1.1.0

vice.yields.sneia.iwamoto99

Iwamoto et al. (1999), ApJ, 124, 439 type Ia supernova (SN Ia) yields

Signature: from vice.yields.sneia import iwamoto99

Importing this module will automatically set the SN Ia yield settings for all elements to the IMF-averaged yields cal-
culated with the Iwamoto et al. (1999) yield table under the W70 explosion model. This study is for Chandrasekhar
Mass progenitors (1.4 𝑀⊙).

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: This module is not imported with a simple import vice statement.

Contents

set_params [<function>] Update the parameters with which the yields are calculated.

vice.yields.sneia.iwamoto99.set_params

Update the parameters with which the yields are calculated from the Iwamoto et al. (1999)1 data.

Signature: vice.yields.sneia.iwamoto99.set_params(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.sneia.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “iwamoto99” when called from this mod-
ule.

Other exceptions are raised by vice.yields.sneia.fractional.

Example Code

>>> from vice.yields.sneia import iwamoto99
>>> iwamoto99.set_params(n = 1.5e-03)

See also:

• vice.yields.sneia.fractional

• vice.yields.sneia.single
1 Iwamoto et al. (1999), ApJ, 124, 439

86 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.yields.sneia.seitenzahl13

Seitenzahl et al. (2013), MNRAS, 429, 1156 typa Ia supernova (SN Ia) yields

Signature: from vice.yields.sneia import seitenzahl13

Importing this module will automatically set the SN Ia yield settings for all elements to the IMF-averaged yields calcu-
lated with the Seitenzahl et al. (2013) yield table under the N1 explosion model. This study is for delayed detonation
explosion models of Chandrasekhar mass progenitors (1.4 𝑀⊙).

Tip: By importing this module, the user does not sacrifice the ability to specify their yield settings directly.

Note: This module is not imported with a simple import vice statement.

Contents

set_params [<function>] Update the parameters with which the yields are calculated.

vice.yields.sneia.seitenzahl13.set_params

Update the parameters with which the yields are calculated from the Seitenzahl et al. (2013)1 data.

Signature: vice.yields.sneia.seitenzahl13(**kwargs)

Parameters

kwargs [varying types] Keyword arguments to pass to vice.yields.sneia.fractional.

Raises

• TypeError

– Received a keyword argument “study”. This will always be “seitenzahl13” when called from this
module.

Other exceptions are raised by vice.yields.sneia.fractional.

See also:

vice.yields.sneia.fractional
1 Seitenzahl et al. (2013), ApJ, 124, 439

4.2. Package Contents 87

VICE, Release 1.1.0

Example Code

>>> from vice.yields.sneia import seitenzahl13
>>> seitenzahl13.set_params(n = 1.5e-03)

See also:

• vice.yields.sneia.fractional

• vice.yields.sneia.single

vice.yields.presets

Nucleosynthetic Yield Presets

New in version 1.1.0.

Save copies of user-constructed yield settings for loading into VICE. Users can create external yield scripts which
modify VICE’s nucleosynthetic yield settings, then make these settings available to import statements.

Note: These features may not function properly if VICE is installed locally (i.e. if it was installed with a --user flag).
Please speak with your administrator about installing VICE globally if this is an issue.

Contents

save [<function>] Save a copy of the yield settings declared in external python code. This will make the yield settings
available to import statements for future simulations.

remove [<function>] Remove a copy of yield presets previously saved.

JW20 [yield preset] The yield presets associated with Johnson & Weinberg (2020)1.

vice.yields.presets.save

Save a permanent copy of yields stored in a given file for loading back into VICE at any time via an import statement.

Signature: vice.yields.presets.save(filename)

New in version 1.1.0.

Parameters

filename [str] The full or relative path to the script containing the yields to be saved. The name of this file will
become the name of the preset to use in import statements.

1 Johnson & Weinberg (2020), arxiv:1911.02598

88 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Raises

• RuntimeError

– An exception occurs in attempting to import the file

– The file is named JW20.py. This will always be the Johnson & Weinberg (2020) preset file.

• IOError

– The file does not exist

• TypeError

– filename is not of type str

Example Code

The following in a file named “example.py”:

import vice
vice.yields.ccsne.settings['o'] = 0.015
vice.yields.ccsne.settings['fe'] = 0.0012
vice.yields.sneia.settings['o'] = 0.0
vice.yields.sneia.settings['fe'] = 0.0017

And the following in the same directory as that file:

>>> import vice
>>> vice.yields.presets.save("example.py")

This will enable the following from any directory:

>>> import vice
>>> from vice.yields.presets import example
>>> vice.yields.ccsne.settings['o']
0.015

vice.yields.presets.remove

Delete a copy of yield presets previously saved by a call to vice.yields.presets.save.

Signature vice.yields.presets.remove(name, force = False)

New in version 1.1.0.

4.2. Package Contents 89

VICE, Release 1.1.0

Parameters

name [str] The name of the preset.

force [bool [default][False]] If True, will not stop for user confirmation before removing the yield file once it’s
found.

Raises

• RuntimeError

– The preset module is not found

– Another exception occurs in attempting to remove the yield file.

• IOError

– The file does not exist

Example Code

>>> import vice
>>> vice.yields.presets.remove("example")
>>> from vice.yields.presets import example
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ImportError: cannot import name 'example' from 'vice.yields.presets'
(/anaconda3/lib/python3.7/site-packages/vice/yields/presets/__init__.py)

See also:

vice.yields.presets.save

vice.yields.presets.JW20

Johnson & Weinberg (2020), arxiv:1911.02598 Nucleosynthetic Yield Settings

Signature: from vice.yields.presets import JW20

New in version 1.1.0.

Importing this module sets the yields of oxygen, iron, and strontium to that adopted in the Johnson & Weinberg (2020)
paper on starburst scenarios.

Note: This module is not imported with a simple “import vice” statement.

90 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

CCSNe

• 𝑦CC
O = 0.015

• 𝑦CC
Fe = 0.0012

• 𝑦CC
Sr = 3.5 × 10−8

SNe Ia

• 𝑦Ia
O = 0

• 𝑦Ia
Fe = 0.0017

• 𝑦Ia
Sr = 0

AGB

All three elements described by the Cristallo et al. (2011)1 yields.

Other Contents

alt_cc_sr_linear [<function>] The functional form of the alternative CCSN Sr yield which is linear in metallicity 𝑍.

alt_cc_sr_limitexp [<function>] The functional form of the alternative CCSN Sr yield which is a limited exponential
in metallicity 𝑍.

vice.yields.presets.JW20.alt_cc_sr_linear

The functional form of the alternative CCSN Sr yield explored in Johnson & Weinberg (2020)1 which is linear in
metallicity 𝑍.

Signature: vice.yields.presets.JW20.alt_cc_sr_linear(Z, Z_solar = 0.014)

New in version 1.1.0.

Parameters

Z [real number] The metallicity by mass 𝑀𝑍/𝑀⋆.

Z_solar [real number [default][0.014]] The metallicity by mass of the Sun. Default value is take from Asplund et al.
(2009)2.

1 Cristallo et al. (2011), ApJS, 197, 17
1 Johnson & Weinberg (2020), arxiv:1911.02598
2 Asplund et al. (2009), ARA&A, 47, 481

4.2. Package Contents 91

VICE, Release 1.1.0

Returns

y [real number] The IMF-averaged CCSN Sr yield as a function of metallicity Z.

Notes

The yield is defined by:

𝑦CC
Sr = 3.5 × 10−8

(︂
𝑍

𝑍⊙

)︂

Example Code

>>> import vice
>>> from vice.yields.presets import JW20
>>> vice.yields.ccsne.settings['sr'] = JW20.alt_cc_sr_linear
>>> modified = lambda z: JW20.alt_cc_sr_linear(z, Z_solar = 0.018)
>>> vice.yields.ccsne.settings['sr'] = modified

vice.yields.presets.JW20.alt_cc_sr_limitexp

The functional form of the alternative CCSN Sr yield explored in Johnson & Weinberg (2020)1 which is a limited
exponential in 𝑍.

Signature: vice.yields.presets.JW20.alt_cc_sr_limitexp(Z, Z_solar = 0.014)

New in version 1.1.0.

Parameters

Z [real number] The metallicity by mass 𝑀𝑍/𝑀⋆.

Z_solar [real number [default][0.014]] The metallicity by mass of the Sun. Default value is take from Asplund et al.
(2009)2.

Returns

y [real number] The IMF-averaged CCSN Sr yield as a function of metallicity Z.
1 Johnson & Weinberg (2020), arxiv:1911.02598
2 Asplund et al. (2009), ARA&A, 47, 481

92 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Notes

The yield is defined by:

𝑦CC
Sr = 10−7

[︁
1 − 𝑒−10(𝑍/𝑍⊙)

]︁

Example Code

>>> import vice
>>> from vice.yields.presets import JW20
>>> vice.yields.ccsne.settings['sr'] = JW20.alt_cc_sr_limitexp
>>> modified = lambda z: JW20.alt_cc_sr_limitexp(z, Z_solar = 0.018)
>>> vice.yields.ccsne.settings['sr'] = modified

vice.elements

Chemical Elements

Provides a means of accessing nucleosynthetic yield information on an element-by-element basis.

New in version 1.1.0.

Contents

recognized [tuple of strings] The symbols of all elements that VICE recognizes as they appear on the periodic table.

element [type] Provides a means of accessing and modifying relevant information for different elements as well
nucleosynthetic yields.

yields [type] Provides a means of accessing and modifying nucleosynthetic yield settings.

Element objects can be created from their symbols, or accessed directly through VICE’s namespace. For example:

>>> import vice
>>> vice.elements.Fe

vice.element{
symbol ------------ > Fe
name -------------- > Iron
atomic number ----- > 26
primordial -------- > 0
solar abundance --- > 0.00129
sources ----------- > ['CCSNE', 'SNEIA']
stable isotopes --- > [54, 56, 57, 58]
yields.ccsne ------ > 0.000246
yields.sneia ------ > 0.00258

}
>>> example = vice.elements.element("sr")
>>> example

vice.element{
symbol ------------ > Sr
name -------------- > Strontium
atomic number ----- > 38

(continues on next page)

4.2. Package Contents 93

VICE, Release 1.1.0

(continued from previous page)

primordial -------- > 0
solar abundance --- > 4.74e-08
sources ----------- > ['CCSNE', 'AGB']
stable isotopes --- > [84, 86, 87, 88]
yields.ccsne ------ > 1.34e-08
yields.sneia ------ > 0

}
>>> example.symbol = 'fe'
>>> example

vice.element{
symbol ------------ > Fe
name -------------- > Iron
atomic number ----- > 26
primordial -------- > 0
solar abundance --- > 0.00129
sources ----------- > ['CCSNE', 'SNEIA']
stable isotopes --- > [54, 56, 57, 58]
yields.ccsne ------ > 0.000246
yields.sneia ------ > 0.00258

}

See also:

• vice.yields

• vice.atomic_number

• vice.primordial

• vice.solar_z

• vice.sources

• vice.stable_isotopes

vice.elements.element

An object describing an element on the periodic table and its astrophysical nucleosynthetic sources and their associated
yields.

Signature: vice.elements.element(symbol)

New in version 1.1.0.

Parameters

symbol [str [case-insensitive]] The symbol of the element as it appears on the periodic table.

94 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Attributes

symbol [str] The symbol of the element as it appears on the periodic table.

name [str] The full name of the element in English.

yields [yields] The yields object containing the nucleosynthetic yield settings for this element.

atomic_number [int] The atomic number (protons only) of this element.

primordial [float] The primordial abundance by mass of this element according to the standard model345.

solar_z [float] The abundance by mass of this element in the sun as determined by Asplund et al. (2009)1.

sources [list of strings] The dominant astrophysical sources of this element as reported by Johnson (2019)2.

stable_isotopes [list of integers] The mass numbers (protons and neutrons) of the stable isotopes of this element.

See also:

• vice.yields.ccsne.settings

• vice.yields.sneia.settings

• vice.atomic_number

• vice.primordial

• vice.solar_z

• vice.sources

• vice.stable_isotopes

Example Code

>>> import vice
>>> vice.elements.Fe

vice.element{
symbol ------------ > Fe
name -------------- > Iron
atomic number ----- > 26
primordial -------- > 0
solar abundance --- > 0.00129
sources ----------- > ['CCSNE', 'SNEIA']
stable isotopes --- > [54, 56, 57, 58]
yields.ccsne ------ > 0.000246
yields.sneia ------ > 0.00258

}
>>> example = vice.elements.element("sr")
>>> example

vice.element{
symbol ------------ > Sr
name -------------- > Strontium

(continues on next page)

3 Planck Collaboration et al. (2016), A&A, 594, A13
4 Pitrou et al. (2018), Phys. Rep., 754, 1
5 Pattie et al. (2018), Science, 360, 627
1 Asplund et al. (2009), ARA&A, 47, 481
2 Johnson (2019), Science, 363, 474

4.2. Package Contents 95

VICE, Release 1.1.0

(continued from previous page)

atomic number ----- > 38
primordial -------- > 0
solar abundance --- > 4.74e-08
sources ----------- > ['CCSNE', 'AGB']
stable isotopes --- > [84, 86, 87, 88]
yields.ccsne ------ > 1.34e-08
yields.sneia ------ > 0

}
>>> example.symbol = 'fe'
>>> example

vice.element{
symbol ------------ > Fe
name -------------- > Iron
atomic number ----- > 26
primordial -------- > 0
solar abundance --- > 0.00129
sources ----------- > ['CCSNE', 'SNEIA']
stable isotopes --- > [54, 56, 57, 58]
yields.ccsne ------ > 0.000246
yields.sneia ------ > 0.00258

}

vice.elements.element.symbol

Type : str

The one- or two-letter symbol of this element as it appears on the periodic table.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.elements.Fe.symbol

'Fe'
>>> example = vice.elements.element("sr")
>>> example.symbol = "Mg"

vice.elements.element.name

Type : str

The full name of the element in English.

New in version 1.1.0.

96 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> import vice
>>> vice.elements.Mg.name

'Magnesium'
>>> vice.elements.Sr.name

'Strontium'
>>> vice.elements.Ne.name

'Neon'

vice.elements.element.yields

The current yield settings from core collapse and type Ia supernovae and asymptotic giant branch stars. See ach
attribute’s docstring for more information.

New in version 1.1.0.

Attributes

ccsne [float or <function>] The current setting for core collapse supernovae.

sneia [float or <function>] The current setting for type Ia supernovae.

Example Code

>>> import vice
>>> vice.elements.Fe.yields.sneia

0.00258
>>> vice.elements.Fe.yields.ccsne = 0.0012
>>> vice.yields.ccsne.settings['fe']

0.0012

vice.elements.element.atomic_number

Type : int

The atomic number (protons only) of the element.

New in version 1.1.0.

4.2. Package Contents 97

VICE, Release 1.1.0

vice.elements.element.primordial

Type :: float

The abundance of this element by mass following big bang nucleosynthesis, according to the standard model123. This
is zero for all elements with the exception of helium, for which it is 0.24672.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.elements.Fe.primordial

0
>>> vice.elements.He.primordial

0.24672

vice.elements.element.solar_z

Type : float

The abundance by mass of this element in the sun as reported by Asplund et al. (2009)1.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.elements.Fe.solar_z

0.00129
>>> vice.elements.O.solar_z

0.00572

vice.elements.element.sources

Type : list of strings

Strings denoting the dominant sources of enrichment for this element as reported by Johnson (2019)1.

New in version 1.1.0.
1 Planck Collaboration et al. (2016), A&A, 594, A13
2 Pitrou et al. (2018), Phys. Rep., 754, 1
3 Pattie et al. (2018), Science, 360, 627
1 Asplund et al. (2009), ARA&A, 47, 481
1 Johnson (2019), Science, 363, 474

98 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> import vice
>>> vice.elements.Fe.sources

['CCSNE', 'SNEIA']
>>> vice.elements.Mg.sources

['CCSNE']

Note: This parameter does not impact simulations in any way. It is purely a look-up function.

vice.elements.element.stable_isotopes

Type : list of integers

The mass numbers (protons and neutrons) of the stable isotopes of this element.

New in version 1.1.0.

Example Code

>>> import vice
>>> vice.elements.Fe.stable_isotopes

[54, 56, 57, 58]
>>> vice.elements.Mg.stable_isotopes

[24, 25, 26]

vice.elements.yields

Current Nucleosynthetic yield settings for a given element.

Signature: vice.elements.yields(symbol)

New in version 1.1.0.

Parameters

symbol [str [case-insensitive]] The symbol of an element as it appears on the periodic table.

Attributes

ccsne [float or <function>] The core collapse supernova yield setting.

sneia [float or <function>] The type Ia supernova yield setting.

Note: modifying yields here is equivalent to modifying them through the vice.yields module.

4.2. Package Contents 99

VICE, Release 1.1.0

vice.elements.yields.ccsne

Type : real number or <function>

The current yield setting for core collapse supernovae (CCSNe). If this is a real number, it will be interpreted as
a constant, metallicity-independent yield. If it is a function, it must accept the metallicity by mass 𝑍 as the only
parameter.

New in version 1.1.0.

These values can be calculated by calling vice.yields.ccsne.fractional.

Note: Modifying yield settings here is equivalent to modifying vice.yields.ccsne.settings.

See also:

• vice.yields.ccsne.settings

• vice.yields.ccsne.fractional

• vice.yields.ccsne.table

Example Code

>>> import vice
>>> vice.elements.Fe.yields.ccsne = 0.0012
>>> vice.elements.O.yields.ccsne = 0.015

vice.elements.yields.sneia

Type : real number

The current yield setting for type Ia supernovae (SNe Ia). Interpreted as a constant, metallicity-independent yield.

New in version 1.1.0.

These values can be calculated by calling vice.yields.sneia.fractional.

Note: Modifying yield settings here is equivalent to modifying vice.yields.sneia.settings.

See also:

• vice.yields.sneia.settings

• vice.yields.sneia.fractional

• vice.yields.sneia.single

100 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> import vice
>>> vice.elements.Fe.yields.sneia = 0.0017
>>> vice.elements.O.yields.sneia = 0

vice.imf

Built-in functional forms of popular stellar initial mass functions (IMFs).

New in version 1.1.0.

Contains

Kroupa [<function>] The Kroupa (2001) IMF1.

Salpeter [<function>] The Salpeter (1955) IMF2.

vice.imf.kroupa

The (unnormalized) Kroupa (2001)1 stellar initial mass function (IMF).

Signature: vice.imf.kroupa(mass)

New in version 1.1.0.

Parameters

mass [real number] The stellar mass in solar masses.

Returns

dndm [real number] The unnormalized value of the Kroupa IMF at that stellar mass, defined by:

𝑑𝑁

𝑑𝑚
∼ 𝑚−𝛼

where 𝛼 = 2.3, 1.3, and 0.3 for 𝑚 > 0.5, 0.08 ≤ 𝑚 ≤ 0.5, and 𝑚 < 0.08, respectively.
1 Kroupa (2001), MNRAS, 322, 231
2 Salpeter (1955), ApJ, 121, 161
1 Kroupa (2001), MNRAS, 322, 231

4.2. Package Contents 101

VICE, Release 1.1.0

Raises

• TypeError

– mass is not a real number

• ValueError

– mass is non-positive

Example Code

>>> vice.imf.kroupa(1)
0.04

>>> vice.imf.kroupa(0.5)
0.1969831061351866

>>> vice.imf.kroupa(2)
0.008122523963562356

vice.imf.salpeter

The (unnormalized) Salpeter (1955)1 stellar initial mass function (IMF).

Signature: vice.imf.salpeter(mass)

New in version 1.1.0.

Parameters

mass [real number] The stellar mass in solar masses.

Returns

dndm [real number] The unnormalized value of the Salpeter IMF at that stellar mass, defined by:

𝑑𝑁

𝑑𝑚
∼ 𝑚−𝛼

where 𝛼 = 2.35 always.

Raises

• TypeError

– mass is not a real number

• ValueError

– mass is non-positive
1 Salpeter (1955), ApJ, 121, 161

102 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> vice.imf.salpeter(1)
1.0

>>> vice.imf.salpeter(0.5)
5.098242509277049

>>> vice.imf.salpeter(2)
0.19614602447418766

vice.singlezone

An object designed to run simulations of chemical enrichment under the single-zone approximation for user-specified
parameters. The parameters of the simulation are implemented as attributes of this class.

Signature: Signature: vice.singlezone(**kwargs)

Parameters

kwargs [varying types] Every attribute of this class can be assigned via a keyword argument.

Attributes

name [str [default][“onezonemodel”]] The name of the simulation. Output will be stored in a directory under this
name.

func [<function> [default][vice._globals._DEFAULT_FUNC_]] A function of time describing some evolutionary
parameter. Physical interpretation set by the attribute mode.

mode [str [default][“ifr”]] The interpretation of the attribute func. Either “ifr” for infall rate, “sfr” for star formation
rate, or “gas” for the mass of gas.

verbose [bool [default][False]] Whether or not to print to the console as the simulation runs.

New in version 1.1.0.

elements [tuple [default][(“fe”, “sr”, “o”)]] A tuple of strings holding the symbols of the elements to be simulated.

IMF [str [case-insensitive] or <function> [default][“kroupa”]] The stellar initial mass function (IMF) to adopt.
Either a string denoting a built-in IMF or a function containing a user-constructed IMF.

Recognized built-in IMFs:

• “kroupa”1

• “salpeter”2

eta [real number [default][2.5]] The mass-loading parameter: the ratio of outflow to star formation rates. This changes
when the attribute smoothing is nonzero.

enhancement [real number or <function> [default][1]] The ratio of outflow to ISM metallicities. Numbers are
interpreted as constants. Functions must accept time in Gyr as a parameter.

Zin [real number, <function>, or dataframe [default][0]] The infall metallicity, which can be a constant, time-vary,
or have element-by-element specifications.

1 Kroupa (2001), MNRAS, 231, 322
2 Salpeter (1955), ApJ, 121, 161

4.2. Package Contents 103

VICE, Release 1.1.0

recycling [str [case-insensitive] or real number] [default : “continuous”] Either the string “continuous” or a real
number between 0 and 1. Denotes the prescription for recycling of previously produced heavy nuclei.

bins [array-like [default][[-3.0, -2.95, -2.9, . . . , 0.9, 0.95, 1.0]]] The binspace within which to sort the normalized
stellar metallicity distribution function in each [X/H] and [X/Y] abundance ratio measurement.

delay [real number [default][0.15]] The minimum delay time in Gyr before the onset of type Ia supernovae associated
with a single stellar population

RIa [str [case-insensitive] or <function> [default][“plaw”]] The SN Ia delay-time distribution (DTD) to adopt.
Strings denote built-in DTDs and functions must accept time in Gyr as a parameter.

Mg0 [real number [default][6.0e+09]] The initial gas supply of the galaxy in solar masses. This is only relevant when
the simulation is ran in infall mode (i.e. mode == “ifr”).

smoothing [real number [default][0]] The outflow smoothing timescale in Gyr.3

tau_ia [real number [default][1.5]] The e-folding timescale of type Ia supernovae in gyr when the attribute RIa ==
“exp”.

tau_star [real number or <function> [default][2.0]] The star formation rate per unit gas mass in the galaxy in Gyr.
This can be either a number which will be treated as a constant, or a function of time in Gyr. This changes when
the attribute schmidt == True.

dt [real number [default][0.01]] The timestep size in Gyr.

schmidt [bool [default][False]] A boolean describing whether or not to implement a gas-dependent star formation
efficiency.

schmidt_index [real number [default][0.5]] The power-law index of gas-dependent star formation efficiency.

MgSchmidt [real umber [default][6.0e+09]] The normalization of the gas-supply when the attribute schmidt == True.

m_upper [real number [default][100]] The upper mass limit on star formation in solar masses

m_lower [real number [default][0.08]] The lower mass limit on star formation in solar masses

postMS [real number [default][0.1]] The lifetime ratio of the post main sequence to main sequence phases of stellar
evolution.

New in version 1.1.0.

Z_solar [real number [default][0.014]] The adopted metallicity by mass of the sun.

agb_model [str [case-insensitive] [default][“cristallo11”]] A keyword denoting which table of nucleosynthetic yields
from AGB stars to adopt.

Recognized Keywords:

• “cristallo11”4

• “karakas10”5

3 Johnson & Weinberg (2020), arxiv:1911.02598
4 Cristallo et al. (2011), ApJS, 197, 17
5 Karakas (2010), MNRAS, 403, 1413

104 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Functions

run [[instancemethod]] Run the simulation

from_output [[classmethod]] Obtain a singlezone object with the parameters of the one that produced an output.

Example Code

>>> import vice
>>> sz = vice.singlezone()
>>> sz

vice.singlezone{
name -----------> onezonemodel
func -----------> <function _DEFAULT_FUNC_ at 0x112180ae8>
mode -----------> ifr
verbose --------> False
elements -------> ('fe', 'sr', 'o')
IMF ------------> kroupa
eta ------------> 2.5
enhancement ----> 1.0
entrainment ----> <entrainment settings>
Zin ------------> 0.0
recycling ------> continuous
delay ----------> 0.15
RIa ------------> plaw
Mg0 ------------> 6000000000.0
smoothing ------> 0.0
tau_ia ---------> 1.5
tau_star -------> 2.0
schmidt --------> False
schmidt_index --> 0.5
MgSchmidt ------> 6000000000.0
dt -------------> 0.01
m_upper --------> 100.0
m_lower --------> 0.08
postMS ---------> 0.1
Z_solar --------> 0.014
bins -----------> [-3, -2.95, -2.9, ... , 0.9, 0.95, 1]

}

vice.singlezone.run

Run the simulation.

Signature: x.run(output_times, capture = False, overwrite = False)

4.2. Package Contents 105

VICE, Release 1.1.0

Parameters

x [singlezone] An instance of this class.

output_times [array-like [elements are real numbers]] The times in Gyr at which VICE should record output from the
simulation. These need not be sorted from least to greatest.

capture [bool [default][False]] If True, an output object containing the results of the simulation will be returned.

overwrite [bool [default][False]] If True, will force overwrite any files with the same name as the simulation output
files.

Returns

out [output [only returned if capture == True]] An output object produced from this simulation’s output.

Raises

• TypeError

– Any functional attribute evaluates to a non-numerical value.

• ValueError

– Any element of output_times is negative.

– An inflow metallicity evaluates to a negative value.

• ArithmeticError

– Any functional attribute evaluates to NaN or inf.

• UserWarning

– Any yield settings or class attributes are callable and the user does not have dill installed.

– Output times are more finely spaced than the timestep size.

• ScienceWarning

– Any element tracked by the simulation is enriched in signifcant part by r-process nucleosynthesis.

– Any element tracked by the simulation has a weakly constrained solar abundance measurement.

Notes

Note: Calling this function only causes VICE to produce the output files. The output class handles the reading and
storing of the simulation results.

Note: Saving functional attributes with VICE outputs requires the package dill, an extension to pickle in the python
standard library. It is recommended that VICE users install dill >= 0.2.0.

106 Chapter 4. Comprehensive API Reference

https://pypi.org/project/dill/
https://pypi.org/project/dill/
https://pypi.org/project/dill/

VICE, Release 1.1.0

Note: When overwrite == False, and there are files under the same name as the output produced, this acts as a
halting function. VICE will wait for the user’s approval to overwrite existing files in this case. If users are running
multiple simulations and need their integrations not to stall, they must specify overwrite = True.

Note: VICE will always write output at the final timestep of the simulation. This may be one timestep beyond the last
element of the specified output_times array.

Example Code

>>> import numpy as np
>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> outtimes = np.linspace(0, 10, 1001)
>>> sz.run(outtimes)

vice.singlezone.from_output

Obtain an instance of the singlezone class given either the path to an output or an output itself.

Signature: vice.singlezone.from_output(arg)

New in version 1.1.0.

Parameters

arg [str or output] The full or relative path to the output directory; the ‘.vice’ extension is not necessary. Alterna-
tively, an output object.

Returns

sz [singlezone] A singlezone object with the same parameters as the one which produced the output.

Raises

• TypeError

– arg is neither an output object nor a string

• IOError [Only occurs if the output has been altered]

– The output is missing files

4.2. Package Contents 107

VICE, Release 1.1.0

Notes

Note: In versions before 1.1.0, this function had the call signature vice.mirror (now deprecated).

Note: This function serving as the reader, the writer is the vice.core.singlezone._singlezone.c_singlezone.pickle func-
tion, implemented in Cython.

Example Code

>>> import numpy as np
>>> import vice
>>> vice.singlezone(name = "example").run(np.linspace(0, 10, 1001))
>>> sz = vice.singlezone.from_output("example")
>>> sz

vice.singlezone{
name -----------> example
func -----------> <function _DEFAULT_FUNC_ at 0x10d0c8e18>
mode -----------> ifr
verbose --------> False
elements -------> ('fe', 'sr', 'o')
IMF ------------> kroupa
eta ------------> 2.5
enhancement ----> 1.0
Zin ------------> 0.0
recycling ------> continuous
delay ----------> 0.15
RIa ------------> plaw
Mg0 ------------> 6000000000.0
smoothing ------> 0.0
tau_ia ---------> 1.5
tau_star -------> 2.0
schmidt --------> False
schmidt_index --> 0.5
MgSchmidt ------> 6000000000.0
dt -------------> 0.01
m_upper --------> 100.0
m_lower --------> 0.08
postMS ---------> 0.1
Z_solar --------> 0.014
bins -----------> [-3, -2.95, -2.9, ... , 0.9, 0.95, 1]

}

108 Chapter 4. Comprehensive API Reference

https://cython.org/

VICE, Release 1.1.0

vice.singlezone.name

Type : str

Default : “onezonemodel”

The name of the simulation. The output will be stored in a directory under this name with the extension “.vice”. This
can also be of the form ./path/to/directory/name and the output will be stored there.

Tip: Users need not interact with any of the output files. The output object is designed to read in all of the results
automatically.

Tip: By forcing a “.vice” extension on the output directory, users can run <command> *.vice in a terminal to run
commands over all VICE outputs in a given directory.

Note: The outputs of this class include the full time evolution of the interstellar abundances, the resulting stellar
metallicity distribution, and pickled objects that allow a singlezone object to construct itself from the output. By
separating the output into a handful of files, the full time evolution data and the resulting stellar metallicity distribution
can be stored in pure ascii text files. This allows users to analyze their simulations in languages other than python with
ease. Most of the relevant information is stored in the history.out and mdf.out files within the output directory.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.name = "another_name"

vice.singlezone.func

Type : <function>

Default : vice._globals._DEFAULT_FUNC_

A callable object which must accept time in Gyr as the only parameter. The value returned by this function will represent
either the gas infall history in 𝑀⊙ 𝑦𝑟−1 (mode == “ifr”), the star formation history in 𝑀⊙ 𝑦𝑟−1 (mode == “sfr”), or
the ISM gas supply in 𝑀⊙ (mode == “gas).

Note: The default function returns the value of 9.1 always. With a default mode of “ifr”, this corresponds to an infall
rate of 9.1 𝑀⊙ 𝑦𝑟−1 at all times.

Note: Saving this functional attribute with VICE outputs requires the package dill, an extension to pickle in the
Python standard library. It is recommended that VICE user’s install dill >= 0.2.0.

4.2. Package Contents 109

https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/

VICE, Release 1.1.0

Note: This attribute will always be expected to accept time in Gyr as the only parameter. However, infall and star
formation rates will be interpreted as having units of 𝑀⊙ 𝑦𝑟−1 according to convention.

See also:

vice.singlezone.mode

Example Code

>>> import math as m
>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> def f(t):

if t <= 1:
return 10

else:
return 10 * m.exp(-(t - 1) / 3)

>>> sz.func = f
>>> sz.func = lambda t: 10. * m.exp(-t / 3)

vice.singlezone.mode

Type : str [case-insensitive]

Default : “ifr”

The interpretation of the attribute func.

• mode = “ifr” : The value returned from the attribute func represents the rate of gas infall into the interstellar
medium in 𝑀⊙ 𝑦𝑟−1.

• mode = “sfr” : The value returned from the attribute func represents the star formation rate of the galaxy in
𝑀⊙ 𝑦𝑟−1.

• mode = “gas” : The value returned from the attribute func represents the mass of the ISM gas in 𝑀⊙.

Note: The attribute func will always be expected to accept time in Gyr as the only parameter. However, infall and
star formation rates will be interpreted as having units of 𝑀⊙ 𝑦𝑟−1 according to convention.

See also:

vice.singlezone.func

110 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.mode = "sfr"
>>> sz.mode = "gas"

vice.singlezone.verbose

Type : bool

Default : False

If True, the simulation will print to the console as it evolves.

New in version 1.1.0.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.verbose = True

vice.singlezone.elements

Type : tuple [elements of type str [case-insensitive]]

Default : (“fe”, “sr”, “o”)

The symbols for the elements to track the enrichment for (case-insensitive). The more elements that are tracked, the
longer the simulation will take, but the better calibrated is the total metallicity of the ISM in handling metallicity-
dependent yields.

Tip: The order in which the elements appear in this tuple will dictate the abundance ratios that are quoted in the final
stellar metallicity distribution function. That is, if element X appears before element Y, then VICE will determine the
MDF in 𝑑𝑁/𝑑[𝑌/𝑋] as opposed to 𝑑𝑁/𝑑[𝑋/𝑌]. The elements that users intend to use as “reference elements” should
come earliest in this list.

Note: All versions of VICE support the simulation of all 76 astrophysically produced elements between carbon (“c”)
and bismuth (“bi”). Versions >= 1.2.0 also support helium (“he”).

Note: Some of the heaviest elements that VICE recognizes have statistically significant enrichment from r-process
nucleosynthesis1. Simulations of these elements with realistic parameters and realistic nucleosynthetic yields will
underpredict the absolute abundances of these elements. However, if these nuclei are assumed to be produced promptly
following the formation of a single stellar population, the yield can be added to the yield from core collapse supernovae2.

1 Johnson (2019), Science, 363, 474
2 Johnson & Weinberg (2020), arxiv:1911.02598

4.2. Package Contents 111

VICE, Release 1.1.0

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.elements
("fe", "sr", "o")
>>> sz.elements = ["mg", "fe", "c", "n", "o"]
>>> sz.elements
("mg", "fe", "c", "n", "o")

vice.singlezone.IMF

Type : str [case-insensitive]

Default : “kroupa”

The assumed stellar initial mass function (IMF). Strings denote built-in IMFs.

Built-in IMFs:

• “kroupa”1

• “salpeter”2

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.IMF = "kroupa"
>>> sz.IMF = "salpeter"

vice.singlezone.eta

Type : real number or <function>

Default : 2.5

The mass loading factor, defined as the ratio of the mass outflow rate to the star formation rate.

𝜂 ≡ 𝑀̇out

𝑀̇*

Note: If the attribute smoothing is nonzero, this relationship generalizes to

𝑀̇out = 𝜂(𝑡)⟨𝑀̇*⟩𝜏s =

{︃
𝜂(𝑡)
𝑡

∫︀ 𝑡

0
𝑀̇*(𝑡′)𝑑𝑡′ (𝑡 < 𝜏s)

𝜂(𝑡)
𝜏s

∫︀ 𝑡

𝑡−𝜏s
𝑀̇*(𝑡′)𝑑𝑡′ (𝑡 ≥ 𝜏s)

where 𝜏s is the value of the attribute, the outflow smoothing time.
1 Kroupa (2001), MNRAS, 322, 231
2 Salpeter (1955), ApJ, 121, 161

112 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Note also that the time-average is over the star formation rate only, and not the mass-loading factor.

Note: Saving this functional attribute with VICE outputs requires the package dill, an extension to pickle in the
Python standard library. It is recommended that VICE user’s install dill >= 0.2.0.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.eta = 2
>>> def f(t):

if t <= 2:
return 5

else:
return 1

>>> sz.eta = f

vice.singlezone.enhancement

Type : real number or <function>

Default : 1.0

The ratio of the outflow to ISM metallicities. Real numbers will be taken as constant. Functions must accept time in
Gyr as the only parameter. This will apply to all elements tracked by the simulation.

Note: Saving this functional attribute with VICE outputs requires the package dill, an extension to pickle in the
Python standard library. It is recommended that VICE user’s install dill >= 0.2.0.

See also:

• vice.singlezone.eta

• vice.singlezone.smoothing

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.enhancement = 3
>>> def f(t):

if t <= 1:
return 5

else:
return 1

>>> sz.enhancement = f

4.2. Package Contents 113

https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/
https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/

VICE, Release 1.1.0

vice.singlezone.Zin

Type : real number, <function>, or dataframe

Default : 0.0

The metallicity of gas inflow. Numbers and functions apply to all elements tracked by the simulation. Functions must
accept time in Gyr as the only parameter. A dictionary or a dataframe can also be passed, allowing real numbers and
functions to be assigned on an element-by-element basis.

Tip: The easiest way to switch this attribute to a dataframe is by passing an empty python dictionary {}.

Note: Inflow masses due to primordial abundances and metal-rich infall are treated independently of one another. For
this reason, if a helium-rich infall is required, the difference between the desired helium abundance and the primordial
abundance ∆𝑌 should be specified as opposed to the total abundance.

Note: Dictionaries will be automatically converted into a dataframe.

Note: Saving functional attributes with VICE outputs requires the package dill, an extension to pickle in the Python
standard library. It is recommended that VICE user’s install dill >= 0.2.0.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.Zin = 0.001
>>> def f(t):

return 0.001 * (t / 5)
>>> sz.Zin = lambda t: 0.001 * (t / 5)
>>> sz.Zin = {}
>>> sz.Zin
vice.dataframe{

sr -------------> 0.0
fe -------------> 0.0
o --------------> 0.0

}
>>> sz.Zin["o"] = 0.001
>>> sz.Zin["fe"] = lambda t: 1.0e-04 * (t / 5)
>>> sz.Zin
vice.dataframe{

sr -------------> 0.0
fe -------------> <function main.<__lambda__>(t)>
o --------------> 0.001

}

114 Chapter 4. Comprehensive API Reference

https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/

VICE, Release 1.1.0

vice.singlezone.recycling

Type : real number or str [case-insensitive]

Default : “continuous”

The cumulative return fraction 𝑟(𝑡). This is the mass fraction of a single stellar population returned to the interstellar
medium as gas at the birth metallicity of the stars.

The only allowed string is “continuous” [case-insensitive]. In this case VICE will implement time-dependent recycling
from each episode of star formation via a treatment of the stellar initial mass function and the initial-final remnant mass
model of Kalirai at al. (2008)1.

Numbers must be between 0 and 1 (inclusive), and will be interpreted as the instantaneous recycling fraction: the
fraction of a stellar population’s mass that is returned to the interstellar medium immediately following its formation.

Note: In the case of instantaneous recycling, it is recommened that users adopt r = 0.4 with the Kroupa2 IMF and r =
0.2 with the Salpeter3 IMF based on the findings of Weinberg, Andrews & Freudenburg (2017)4.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example", IMF = "kroupa")
>>> sz.recycling = 0.4
>>> sz.IMF = "salpeter"
>>> sz.recycling = 0.2
>>> sz.recycling = "continuous"

vice.singlezone.bins

Type : array-like [elements must be real numbers]

Default : [-3, -2.95, -2.9, . . . , 0.9, 0.95, 1.0]

The bins in each [X/H] abundance and [X/Y] abundance ratio to sort the normalized stellar metallicity distribution
function into. By default, VICE sorts everything into 0.05-dex bins between [X/H] and [X/Y] = -3 and +1.

Note: The metallicity distributions reported by VICE are normalized to probability distribution functions (i.e. the
integral over all bins is equal to 1).

1 Kalirai et al. (2008), ApJ, 676, 594
2 Kroupa (2001), MNRAS, 231, 322
3 Salpeter (1955), ApJ, 131, 161
4 Weinberg, Andrews & Freudenburg (2017), ApJ, 837, 183

4.2. Package Contents 115

VICE, Release 1.1.0

Example Code

>>> import numpy as np
>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> # 400 bins between 0 and 1
>>> sz.bins = np.linspace(-3, 1, 401)
>>> # 800 bins between -2 and +2
>>> sz.bins = np.linspace(-2, 2, 801)

vice.singlezone.delay

Type : real number

Default : 0.15

The minimum delay time in Gyr before the onset of type Ia supernovae associated with a single stellar population.
Default value is adopted from Weinberg, Andrews & Freudenburg (2017)1.

See also:

vice.singlezone.RIa

vice.singlezone.RIa

Type : <function> or str [case-insensitive]

Default : “plaw”

The delay-time distribution (DTD) for typa Ia supernovae to adopt. If type str, VICE will use a built-in DTD:

• “exp” : 𝑅Ia ∼ 𝑒−𝑡

• “plaw” : 𝑅Ia ∼ 𝑡−1.1

When using the exponential DTD, the e-folding timescale is set by the attribute tau_ia.

Functions must accept time in Gyr as the only parameter.

Tip: A custom DTD does not need to be normalized by the user. VICE will take care of this automatically.

Note: Saving functional attributes with VICE outputs requires the package dill, an extension to pickle in the Python
standard library. It is recommended that VICE user’s install dill >= 0.2.0.

1 Weinberg, Andrews & Freudenburg (2017), ApJ, 837, 183

116 Chapter 4. Comprehensive API Reference

https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/

VICE, Release 1.1.0

Example Code

>>> import math as m
>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.RIa = "exp"
>>> def f(t):

if t < 0.2:
return 1

else:
return m.exp(-(t - 0.2) / 1.4)

>>> sz.RIa = f

vice.singlezone.Mg0

Type : real number

Default : 6.0e+09

The mass of the ISM gas at time = 0 in 𝑀⊙ when ran in infall mode.

Note: This parameter only matters when the simulation is ran in infall mode (i.e. mode == “ifr”). In gas mode,
func(0) specifies the initla gas supply, and in star formation mode, it is func(0) * tau_star(0) (modulo the
prefactors imposed by gas-dependent star formation efficiency, if applicable).

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.Mg0 = 5.0e+09
>>> sz.Mg0 = 0.

vice.singlezone.smoothing

Type : real number

Default : 0.0

The outflow smoothing in Gyr (Johnson & Weinberg 20201). This is the timescale on which the star formation rate is
time-averaged before determining the outflow rate via the mass loading factor (attribute eta). For an outflow rate 𝑀̇out
and a star formation rate 𝑀̇* with a smoothing time 𝜏s:

𝑀̇out = 𝜂(𝑡)⟨𝑀̇*⟩𝜏s

The traditional relationship of 𝑀̇out = 𝜂𝑀̇* is recovered when the user specifies a smoothing time that is smaller than
the timestep size.

Note: While this parameter time-averages the star formation rate, it does NOT time-average the mass-loading factor.

1 Johnson & Weinberg (2020), arxiv:1911.02598

4.2. Package Contents 117

VICE, Release 1.1.0

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.smoothing = 0.0
>>> sz.smoothing = 0.5
>>> sz.smoothing = 1.0

vice.singlezone.tau_ia

Type : real number

Default : 1.5

The e-folding timescale in Gyr of an exponentially decaying delay-time distribution in type Ia supernovae.

Note: Because this is an e-folding timescale, it only matter when the attribute RIa == “exp”.

See also:

vice.singlezone.RIa

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example", RIa = "exp")
>>> sz.tau_ia = 1.0
>>> sz.tau_ia = 1.5
>>> sz.tau_ia = 2.0

vice.singlezone.tau_star

Type : real number or <function>

Default : 2.0

The star formation rate per unit gas supply in Gyr, defined by

𝜏* ≡ 𝑀g/𝑀̇*

where 𝑀g is the ISM gas mass and 𝑀̇* is the star formation rate. Numbers will be interpreted as a constant value.
Functions must accept time in Gyr as the only parameter.

Tip: In infall and gas modes, this parameter can be set to infinity to forcibly shut off star formation.

Note: When the attribute schmidt == True, this is interpreted as the prefactor on gas-dependent star formation
efficiency:

𝜏−1
* = 𝜏−1

*,specified

(︂
𝑀g

𝑀g,Schmidt

)︂𝛼

118 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

where 𝛼 is the power-law index on gas-dependent star formation efficiency, set by the attribute schmidt_index, and
𝜏*,specified is the value of this attribute.

Note: Saving functional attributes with VICE outputs requires the package dill, an extension to pickle in the Python
standard library. It is recommended that VICE user’s install dill >= 0.2.0.

Note: In the interstellar medium and star formation literature, this parameter is often referred to as the depletion
timescale. In this documentation and in much of the galactic chemical evolution literature, it is usually referred to as
the “star formation efficiency timescale.”

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.tau_star = 1
>>> def f(t):

if 5 <= t <= 6:
return 1

else:
return 2

>>> sz.tau_star = f

vice.singlezone.dt

Type : real number

Default : 0.01

The timestep size in Gyr to use in the integration.

Note: For fine timestepping, this affects the total integration time with a 𝑑𝑡−2 dependence. For coarse timestepping,
the integration time is approximately constant, due to it being dominated not by timestepping but by write-out.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.dt = 0.02
>>> sz.dt = 0.005

4.2. Package Contents 119

https://pypi.org/project/dill/
https://docs.python.org/library/
https://pypi.org/project/dill/

VICE, Release 1.1.0

vice.singlezone.schmidt

Type : bool

Default : False

If true, the simulation will adopt a gas-dependent 𝜏*. At each timestep, the star formation efficiency timescale is
determined via:

𝜏*(𝑡) = 𝜏*,specified(𝑡)

(︂
𝑀𝑔

𝑀𝑔,Schmidt

)︂−𝛼

where 𝜏*,specified(𝑡) is the value of the attribute tau_star, 𝑀𝑔 is the mass of the interstellar medium, 𝑀𝑔,Schmidt the
normalization thereof (attribute MgSchmidt), and 𝛼 the power-law index set by the attribute schmidt_index.

This is an application of the Kennicutt-Schmidt star formation law to the single-zone approximation (Kennicutt 19981;
Schmidt 19592, 19633).

If False, this parameter does not impact the star formation efficiency that the user has specified.

See also:

• vice.singlezone.tau_star

• vice.singlezone.schmidt_index

• vice.singlezone.MgSchmidt

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.schmidt = True
>>> sz.schmidt = False

vice.singlezone.schmidt_index

Type : real number

Default : 0.5

The power-law index on gas-dependent star formation efficiency, if applicable:

𝜏−1
* ∼ 𝑀𝛼

𝑔

Note: This number should be 1 less than the power law index which describes the scaling of star formation with the
surface density of gas.

See also:

• vice.singlezone.tau_star

• vice.singlezone.schmidt
1 Kennicutt (1998), ApJ, 498, 541
2 Schmidt (1959), ApJ, 129, 243
3 Schmidt (1963), ApJ, 137, 758

120 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

• vice.singlezone.schmidt_index

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.schmidt_index = 0.5
>>> sz.schmidt_index = 0.4

vice.singlezone.MgSchmidt

Type : real number

Default : 6.0e+09

The normalization of the gas supply in 𝑀⊙ when star formation efficiency is dependent on the gas supply:

𝜏* ∼
(︂

𝑀𝑔

𝑀𝑔,Schmidt

)︂−𝛼

where 𝛼 is specified by the attribute schmidt_index.

Tip: In practice, this quantity should be comparable to a typical gas supply of the simulated zone so that the actual
star formation efficiency at a given timestep is near the user-specified value.

See also:

• vice.singlezone.tau_star

• vice.singlezone.schmidt

• vice.singlezone.schmidt_index

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.MgSchmidt = 5.0e+09

vice.singlezone.m_upper

Type : real number

Default : 100

The upper mass limit on star formation in 𝑀⊙.

4.2. Package Contents 121

VICE, Release 1.1.0

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.m_upper = 120

vice.singlezone.m_lower

Type : real number

Default : 0.08

The lower mass limit on star formation in solar masses.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.m_lower = 0.1

vice.singlezone.postMS

Type : real number

Default : 0.1

New in version 1.1.0.

The ratio of a star’s post main sequence lifetime to its main sequence lifetime.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.postMS = 0.12

vice.singlezone.Z_solar

Type : real number

Default : 0.014

The metallicity by mass of the sun 𝑀𝑍/𝑀⊙. This is used in calibrating the total metallicity of the ISM, which is
necessary when there are only a few elements tracked by the simulation with metallicity dependent yields. This scaling
is implemented as follows:

𝑍ISM = 𝑍⊙

[︃∑︁
𝑖

𝑍𝑖

]︃[︃∑︁
𝑖

𝑍⊙
𝑖

]︃−1

where the summation is taken over the elements tracked by the simulation.

122 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Note: The default value is the metallicity calculated by Asplund et al. (2009)1. VICE adopts the Asplund et al. (2009)
measurements on their element-by-element basis in calculating [X/H] and [X/Y] in simulations; it is thus recommended
that users adopt these measurements as well so that the adopted solar composition is self-consistent. This however has
no qualitative impact on the behavior of the simulation.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example")
>>> sz.Z_solar = 0.014

vice.singlezone.agb_model

Type : str [case-insensitive]

Default : “cristallo11”

A keyword denoting which stellar mass-metallicity grid of fractional nucleosynthetic yields from asymptotic giant
branch (AGB) stars to adopt.

Recognized Keywords:

• “cristallo11”1

• “karakas10”2

Note: If the Karakas (2010) set of yields are adopted and any elements tracked by the simulation are heavier than
nickel, a LookupError will be raised. The Karakas (2010) study did not report yields for elements heavier than nickel.

Example Code

>>> import vice
>>> sz = vice.singlezone(name = "example", elements = ["c", "n", "o"])
>>> sz.agb_model = "karakas10"
>>> sz.agb_model = "cristallo11"

1 Asplund et al. (2009), ARA&A, 47, 481
1 Cristallo et al. (2011), ApJS, 197, 17
2 Karakas (2010), MNRAS, 403, 1413

4.2. Package Contents 123

VICE, Release 1.1.0

vice.history

Obtain a history object from a VICE output containing the time-evolution of the interstellar medium and its relevant
abundance information.

Signature: vice.history(name)

Parameters

name [str] The full or relative path to the output directory. The ‘.vice’ extension is not required.

Returns

hist [history [VICE dataframe derived class]] A subclass of the VICE dataframe designed to store the output and
to calculate relevant quantities automatically upon indexing.

Raises

• IOError [Only occurs if the output has been altered]

– Output directory not found.

– Output files not formatted correctly.

– Other VICE output files are missing from the output.

See also:

vice.core.dataframe.history

Example Code

>>> import numpy as np
>>> import vice
>>> vice.singlezone(name = "example").run(np.linspace(0, 10, 1001))
>>> example = vice.history("example")
>>> example["time"][:10]

[0.0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09]
>>> example["[o/fe]"][:10]

[-0.30581989611140603,
-0.3059028126227887,
-0.3059856206579771,
-0.3060683202832149,
-0.30615091156463625,
-0.30623330628476564,
-0.30631559283107557,
-0.3063978595147838,
-0.30647984166504416,
-0.3065618040838354]

>>> example[100]
vice.dataframe{

time -----------> 1.0
(continues on next page)

124 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

(continued from previous page)

mgas -----------> 5795119000.0
mstar ----------> 2001106000.0
sfr ------------> 2.897559
ifr ------------> 9.1
ofr ------------> 7.243899
eta_0 ----------> 2.5
r_eff ----------> 0.3534769
z_in(fe) -------> 0.0
z_in(sr) -------> 0.0
z_in(o) --------> 0.0
z_out(fe) ------> 0.0002769056
z_out(sr) ------> 3.700754e-09
z_out(o) -------> 0.001404602
mass(fe) -------> 1604701.0
mass(sr) -------> 21.44631
mass(o) --------> 8139837.0
z(fe) ----------> 0.0002769056166059748
z(sr) ----------> 3.700754031107903e-09
z(o) -----------> 0.0014046022178319376
[fe/h] ---------> -0.6682579454664828
[sr/h] ---------> -1.1074881208001155
[o/h] ----------> -0.6098426789720387
[sr/fe] --------> -0.43923017533363273
[o/fe] ---------> 0.05841526649444406
[o/sr] ---------> 0.4976454418280768
z --------------> 0.0033582028978416337
[m/h] ----------> -0.6200211036287412
lookback -------> 9.0

}

vice.mdf

Obtain a fromfile object from a VICE output containing the metallicity distribution function of stars.

Signature: vice.mdf(name)

Parameters

name [str] The full or relative path to the output directory. The ‘.vice’ extension is not required.

Returns

mdf [fromfile [VICE dataframe derived class]] A subclass of the VICE dataframe designed to handle simulation
output.

4.2. Package Contents 125

VICE, Release 1.1.0

Raises

• IOError [Only occurs if the output has been altered]

– The output file is not found.

– The output file is not formatted correctly.

– Other VICE output files are missing from the output.

Notes

VICE normalizes metallicity distribution functions to a probability density, meaning that the area under the distribution
is always equal to one. The value of the distribution in some bin times that bin’s width denotes the fraction of stars
with metallicities in that bin.

Note: For abundances [X/H] and abundance ratios [X/Y] that in the simulation never achieve a value in the user-
specified binspace, the distribution will be NaN in all bins.

Note: For an output under a given name, the metallicity distribution function is stored in an ascii text file under
name.vice/mdf.out. This allows users to open these files without VICE if necessary.

See also:

vice.core.dataframe.fromfile

Example Code

>>> import vice
>>> example = vice.mdf("example")
>>> example.keys()

[“dn/d[sr/h],”,
“dn/d[sr/fe],”
“bin_edge_left,”
“dn/d[o/h],”
“dn/d[o/fe],”
“dn/d[fe/h],”
“bin_edge_right,”
“dn/d[o/sr]”]

>>> example["bin_edge_left"][:10]
[-3.0, -2.95, -2.9, -2.85, -2.8, -2.75, -2.7, -2.65, -2.6, -2.55]

>>> example[60]
vice.dataframe{

bin_edge_left --> 0.0
bin_edge_right -> 0.05
dn/d[fe/h] -----> 0.0
dn/d[sr/h] -----> 0.0
dn/d[o/h] ------> 0.0
dn/d[sr/fe] ----> 0.06001488
dn/d[o/fe] -----> 0.4337209

(continues on next page)

126 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

(continued from previous page)

dn/d[o/sr] -----> 0.0
}

vice.output

Reads in the output from singlezone simulations and allows the user to access it easily via dataframes.

Signature: vice.output(name)

Parameters

name [str] The full or relative path to the output directory. The ‘.vice’ extension is not required.

Attributes

name [str] The name of the .vice directory containing the simulation output.

elements [tuple] The symbols of the elements whose enrichment was tracked by the simulation, as they appear on
the periodic table.

history [dataframe] The dataframe read in via vice.history.

mdf [dataframe] The dataframe read in via vice.mdf.

ccsne_yields [dataframe] The core-collapse supernova yields employed in the simulation.

sneia_yields [dataframe] The type Ia supernova yields employed in the simulation.

Note: Reinstancing functional yields and simulation parameters requires dill, an extension to pickle in the python
standard library. It is recommand that VICE users install dill >= 0.2.0.

Tip: VICE outputs are stored in directories with a ‘.vice’ extension following the name of the simulation. This allows
users to run <command> *.vice in a terminal to run commands on all VICE outputs in a given directory.

Functions

• show (requires matplotlib >= 2.0.0)

See also:

• vice.history

• vice.mdf

4.2. Package Contents 127

https://pypi.org/project/dill/
https://pypi.org/project/dill/
https://matplotlib.org/

VICE, Release 1.1.0

Example Code

>>> import vice
>>> out = vice.output("example")
>>> out.history[100]

vice.dataframe{
time -----------> 1.0
mgas -----------> 5795119000.0
mstar ----------> 2001106000.0
sfr ------------> 2.897559
ifr ------------> 9.1
ofr ------------> 7.243899
eta_0 ----------> 2.5
r_eff ----------> 0.3534769
z_in(fe) -------> 0.0
z_in(sr) -------> 0.0
z_in(o) --------> 0.0
z_out(fe) ------> 0.0002769056
z_out(sr) ------> 3.700754e-09
z_out(o) -------> 0.001404602
mass(fe) -------> 1604701.0
mass(sr) -------> 21.44631
mass(o) --------> 8139837.0
z(fe) ----------> 0.0002769056166059748
z(sr) ----------> 3.700754031107903e-09
z(o) -----------> 0.0014046022178319376
[fe/h] ---------> -0.6682579454664828
[sr/h] ---------> -1.1074881208001155
[o/h] ----------> -0.6098426789720387
[sr/fe] --------> -0.43923017533363273
[o/fe] ---------> 0.05841526649444406
[o/sr] ---------> 0.4976454418280768
z --------------> 0.0033582028978416337
[m/h] ----------> -0.6200211036287412
lookback -------> 9.0

}
>>> out.mdf[60]

vice.dataframe{
bin_edge_left --> 0.0
bin_edge_right -> 0.05
dn/d[fe/h] -----> 0.0
dn/d[sr/h] -----> 0.0
dn/d[o/h] ------> 0.0
dn/d[sr/fe] ----> 0.06001488
dn/d[o/fe] -----> 0.4337209
dn/d[o/sr] -----> 0.0

}

128 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

vice.output.name

Type : str

The name of the simulation; this corresponds to the name of the ‘.vice’ directory containing the output.

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.name

'example'

vice.output.elements

Type : tuple of strings

The symbols of the elements whose enrichment was modeled to produce the output file, as they appear on the periodic
table.

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.elements

('fe', 'sr', 'o')

vice.output.history

Type : dataframe

The dataframe read in via vice.history with the same name as this output.

See also:

vice.history

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.history["time"][100]

1.0
>>> example.history

vice.dataframe{
time -----------> 1.0
mgas -----------> 5795119000.0
mstar ----------> 2001106000.0

(continues on next page)

4.2. Package Contents 129

VICE, Release 1.1.0

(continued from previous page)

sfr ------------> 2.897559
ifr ------------> 9.1
ofr ------------> 7.243899
eta_0 ----------> 2.5
r_eff ----------> 0.3534769
z_in(fe) -------> 0.0
z_in(sr) -------> 0.0
z_in(o) --------> 0.0
z_out(fe) ------> 0.0002769056
z_out(sr) ------> 3.700754e-09
z_out(o) -------> 0.001404602
mass(fe) -------> 1604701.0
mass(sr) -------> 21.44631
mass(o) --------> 8139837.0
z(fe) ----------> 0.0002769056166059748
z(sr) ----------> 3.700754031107903e-09
z(o) -----------> 0.0014046022178319376
[fe/h] ---------> -0.6682579454664828
[sr/h] ---------> -1.1074881208001155
[o/h] ----------> -0.6098426789720387
[sr/fe] --------> -0.43923017533363273
[o/fe] ---------> 0.05841526649444406
[o/sr] ---------> 0.4976454418280768
z --------------> 0.0033582028978416337
[m/h] ----------> -0.6200211036287412
lookback -------> 9.0

}

vice.output.mdf

Type : dataframe

The dataframe read in via vice.mdf with the same name as this output.

See also:

vice.mdf

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.mdf["bin_edge_left"][:10]

[-3.0, -2.95, -2.9, -2.85, -2.8, -2.75, -2.7, -2.65, -2.6, -2.55]
>>> example.mdf[60]

vice.dataframe{
bin_edge_left --> 0.0
bin_edge_right -> 0.05
dn/d[fe/h] -----> 0.0
dn/d[sr/h] -----> 0.0
dn/d[o/h] ------> 0.0

(continues on next page)

130 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

(continued from previous page)

dn/d[sr/fe] ----> 0.06001488
dn/d[o/fe] -----> 0.4337209
dn/d[o/sr] -----> 0.0

}

vice.output.ccsne_yields

Type : dataframe

The core-collapse supernova yields employed in the simulation.

Note: This dataframe will not be customizable

See also:

vice.yields.ccsne.settings

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.ccsne_yields

vice.dataframe{
fe -------------> 0.000246
o --------------> 0.00564
sr -------------> 1.34e-08

}

vice.output.sneia_yields

Type : dataframe

The type Ia supernova yields employed in the simulation.

Note: This dataframe will not be customizable.

See also:

vice.yields.sneia.settings

4.2. Package Contents 131

VICE, Release 1.1.0

Example Code

>>> import vice
>>> example = vice.output("example")
>>> example.sneia_yields

vice.dataframe{
fe -------------> 0.00258
o --------------> 5.79e-05
sr -------------> 0

}

vice.output.show

Show a plot of the given quantity referenced by a keyword argument.

Signature: x.show(key, xlim = None, ylim = None)

Parameters

x [output] An instance of this class.

key [str [case-insensitive]] The keyword argument. If this is a quantity stored in the history attribute, it will be
plotted against time by defult. Conversely, if it is stored in the mdf attribute, the corresponding stellar metallicity
distribution function will be plotted.

Users can also specify an argument of the format “key1-key2” where key1 and key2 are elements of the history
output. This will then plot key1 against key2.

xlim [array-like (contains real numbers) [default][None]] The x-limits to impose on the shown plot, if any.

ylim [array-like (contains real numbers) [default][None]] The y-limits to impose on the shown plot, if any.

Raises

• KeyError

– Key is not found in either history or mdf attributes

• ModuleNotFoundError

– Matplotlib version >= 2.0.x is not found in the user’s system.

Note: In python 3.5.x, this will be an ImportError.

Other errors may be raised by matplotlib.pyplot.show.

132 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Notes

This function is NOT intended to generate publication quality plots for users. It is included purely as a convenience
function to allow visualization and inspection of simulation output immediately with only one line of code.

Example Code

>>> import vice
>>> out = vice.output("example")
>>> out.show("dn/d[o/fe]")
>>> out.show("sfr")
>>> out.show("[o/fe]-[fe/h]")

vice.output.zip

Compress a VICE output into a zipfile.

Signature: vice.output.zip(name)

New in version 1.1.0.

Parameters

name [str or output] The full or relative path to an output, or the output object itself. The ‘.vice’ extension is not
required.

Raises

• IOError

– Output is not found

– Directory could not be interpreted as a VICE output.

Example Code

>>> import numpy as np
>>> import vice
>>> vice.singlezone(name = "example").run(np.linspace(0, 10, 1001))
>>> vice.output.zip("example")

4.2. Package Contents 133

VICE, Release 1.1.0

vice.output.unzip

Decompress a VICE output from a zipfile.

Signature: vice.output.unzip(name)

New in version 1.1.0.

Parameters

name [str] The full or relative path to a compressed VICE output file. The ‘.vice.zip’ extension is not required.

Raises

• IOError

– Zipped file is not found.

Example Code

>>> import vice
>>> vice.output.unzip("example.vice.zip")
>>> out = vice.output("example")

vice.mirror

[DEPRECATED]

Obtain an instance of the vice.singlezone class given only an instance of the vice.output class or the path to the output.
The returned object will have the same parameters as that which produced the output, allowing re-simulation with
whatever modifications the user desires.

Signature: vice.mirror(arg)

Deprecated since version 1.1.0: Users should instead call vice.singlezone.from_output to achieve this functionality.

Parameters

arg [str or output] Either the path to the output (type str) or the output object itself.

Returns

obj [singlezone] A new singlezone object, with the same parameters as that which produced the output.

134 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

Raises

• ImportError

– The output has encoded functional attributes and the user does not have dill installed.

• UserWarning

– The output was produced with functional attributes, but was ran on a system without dill, and they
have thus been lost.

Note: Saving and reinstancing functional simulation parameters from VICE outputs requires dill, an extenstion to
pickle in the python standard library. It is recommended that VICE users install dill >= 0.2.0.

Example Code

>>> out = vice.output("example")
>>> new = vice.mirror(out)
>>> new
vice.singlezone{

name -----------> onezonemodel
func -----------> <function _DEFAULT_FUNC_ at 0x1085a6ae8>
mode -----------> ifr
verbose --------> False
elements -------> ('fe', 'sr', 'o')
IMF ------------> kroupa
eta ------------> 2.5
enhancement ----> 1.0
Zin ------------> 0.0
recycling ------> continuous
delay ----------> 0.15
RIa ------------> plaw
Mg0 ------------> 6000000000.0
smoothing ------> 0.0
tau_ia ---------> 1.5
tau_star -------> 2.0
schmidt --------> False
schmidt_index --> 0.5
MgSchmidt ------> 6000000000.0
dt -------------> 0.01
m_upper --------> 100.0
m_lower --------> 0.08
Z_solar --------> 0.014
bins -----------> [-3, -2.95, -2.9, ... , 0.9, 0.95, 1]

}
>>> import numpy as np
>>> new.run(np.linspace(0, 10, 1001))

4.2. Package Contents 135

https://pypi.org/dill/
https://pypi.org/dill/
https://pypi.org/dill/
https://pypi.org/dill/

VICE, Release 1.1.0

vice.ScienceWarning

A Warning class designed to treat as a distinct set of warnings those related to the scientific accuracy or precision of
values returned from a given function.

Signature: vice.ScienceWarning

Although it is not recommended, this class of warnings can be silenced via:

>>> warnings.filterwarnings("ignore", category = vice.ScienceWarning)

Alternatively, to silence all errors within VICE:

>>> vice.warnings.filterwarnings("ignore")

To silence all warnings globally:

>>> warnings.filterwarnings("ignore")

vice.VisibleRuntimeWarning

A RuntimeWarning which - contrary to the python default RuntimeWarning - is visible by default. Features which
raise this warning may take considerably longer to finish than otherwise.

Signature: vice.VisibleRuntimeWarning

New in version 1.1.0.

Although it is not recommended, this class of warnings can be silenced via:

>>> warnings.filterwarnings("ignore",
category = vice.VisibleRuntimeWarning)

Alternatively, to silence all errors within VICE:

>>> vice.warnings.filterwarnings("ignore")

To silence all warnings globally:

>>> warnings.filterwarnings("ignore")

vice.VisibleDeprecationWarning

A DeprecationWarningwhich - contrary to the python default DeprecationWarning - is visible by default. Features
which raise this warning are deprecated and will be removed in a future release of VICE.

Signature: vice.VisibleDeprecationWarning

New in version 1.1.0.

Although it is not recommended, this class of warnings can be silenced via:

>>> warnings.filterwarnings("ignore",
category = vice.VisibleDeprecationWarning)

Alternatively, to silence all errors within VICE:

136 Chapter 4. Comprehensive API Reference

VICE, Release 1.1.0

>>> vice.warnings.filterwarnings("ignore")

To silence all warnings globally:

>>> warnings.filterwarnings("ignore")

4.2. Package Contents 137

VICE, Release 1.1.0

138 Chapter 4. Comprehensive API Reference

CHAPTER

FIVE

DEVELOPER’S DOCUMENTATION

5.1 License

VICE is protected under an MIT License, found in the git repository:

MIT License

Copyright (c) 2019 James W. Johnson

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

5.2 Citing VICE

Usage of this version of VICE in research should cite Johnson & Weinberg (2020). If you’re using BibTeX, add the
following to your .bib file:

@ARTICLE{2019arXiv191102598J,
author = {{Johnson}, James W. and {Weinberg}, David H.},
title = "{The Impact of Starbursts on Element Abundance Ratios}",

journal = {arXiv e-prints},
keywords = {Astrophysics - Astrophysics of Galaxies},

year = 2019,
month = nov,
eid = {arXiv:1911.02598},

pages = {arXiv:1911.02598},
archivePrefix = {arXiv},

eprint = {1911.02598},
primaryClass = {astro-ph.GA},

(continues on next page)

139

https://github.com/giganano/VICE/blob/master/LICENSE
https://github.com/giganano/VICE.git
https://arxiv.org/abs/1911.02598

VICE, Release 1.1.0

(continued from previous page)

adsurl = {https://ui.adsabs.harvard.edu/abs/2019arXiv191102598J},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}

}

5.3 Contributors

5.3.1 James W. Johnson

Primary Author
Email: giganano9@gmail.com
Webiste: https://sites.google.com/view/jameswjohnson/
The Ohio State University Department of Astronomy
140 W. 18th Ave., Columbus, OH, 43204

5.3.2 David H. Weinberg

Advising Author
Website: http://www.astronomy.ohio-state.edu/~dhw/
The Ohio State University Department of Astronomy
140 W. 18th Ave., Columbus, OH, 43204

5.4 Acknowledgements

J.W.J. is grateful to D.H.W. and Jennifer A. Johnson at The Ohio State University for continual guidance in galactic
chemical evolution modeling. J.W.J. also acknowledges the valuable discussion on the implementation of the cumula-
tive return fraction contributed by Jenna Freudenburg at The Ohio State University. Construction of this software was
supported in part by an Ohio State University Graduate Fellowship.

5.5 Submitting a Bug Report

If you suspect buggy behavior in VICE, please open an issue at the issues page on GitHub. Create a new issue with
a description of the problem, a copy of relevant pieces of code, and a full traceback if possible. Please also attach the
label bug to the issue.

140 Chapter 5. Developer’s Documentation

mailto:giganano9@gmail.com
https://sites.google.com/view/jameswjohnson/
http://www.astronomy.ohio-state.edu/~dhw/
https://github.com/giganano/VICE/issues

VICE, Release 1.1.0

5.6 Contributing to VICE

VICE is written in a cohesive manner around a core set of objects. That is, VICE’s implementation shares one library,
with considerable overlap between relevant calculations (e.g. the singlezone object makes use of the dataframe
objects, and so on). The dataframe being the exception which is implemented in Cython, the majority of these objects
are implemented in C, declared via typedef struct statements in the file vice/src/objects/objects.h. VICE’s
entire C library can be found in the directory vice/src/, and the major components of its python implementation
in vice/core/. This includes the singlezone object, the dataframe and all derived classes, the output object,
and single stellar population routines in the vice/core/ssp/ subdirectory. The hierarchical file structure of these
directories is designed to mirror one another. Separate from the VICE core is the yields module, in which all
nucleosynthetic yield calculations are implemented, independent of the simulation features.

Note: The primary author (James W. Johnson) reserves the right to make revisions to all contributed code and asso-
ciated documentation.

5.6.1 Building a New Extension

To contribute to VICE, first fork the repository and add any necessary routines in the fork. These changes should reflect
the overall design of the package: with all C extensions in vice/src/; deviating from this pattern will cause a broken
import following installation of the modified version of the code. Unless the modification is to the vice/yields/
module, the python wrapping of these functions should be in vice/core/.

All extensions should be given unit tests, making use of the moduletest and unittest objects scripted in the files
vice/testing/moduletest.py and vice/testing/unittest.py. These objects can be created from functions
via decorators. Place @unittest before a function returning a string describing the dot-notation path to the function
and the unit test function itself to obtain a unittest object. Similarly, place @moduletest before a function return
a string describing the dot-notation path to the module and a list of unittest and moduletest objects to obtain a
moduletest object. Finally, link the tests to that of the parent directory’s moduletest object.

5.6.2 Documenting Changes

All docstrings visible to the user after installation should be in the numpydocs format. This is not required (though
recommended) for docstrings not accessible to the user. Any C routines added to the source code should be given
comment headers with descriptions of their purpose, any parameters they accept, what they return, and the header files
they’re declared in. These comment headers should reflect the style of those already present in the C library. Finally,
add the new features to the API reference config file at docs/src/users_guide/pkgcontents/gen/config.py
and generate the documentation by running make in the docs/ directory.

5.6.3 Submitting a Contribution

To submit your contribution, first conduct the steps outlined above, then please open a pull request, and label it as an
enhancement.

5.6. Contributing to VICE 141

https://github.com/giganano/VICE/pulls

	Installing VICE
	Dependencies
	A Note on Implementation

	Installing from Source
	Things to Avoid
	Additional Options

	Troubleshooting Your Build
	ImportError After Installation
	Running the setup.py File Failed
	Running the Tests Resulted in a Segmentation Fault
	VICE Isn’t Running from the Command Line
	Compiler Failure

	Uninstalling VICE

	Getting Started
	Tutorial
	Example Code
	Accessing Documentation
	From the Command Line

	Science Documentation
	Background
	Galactic Chemical Evolution
	The Singlezone Approximation

	Implementation
	Motivation
	Numerical Approach
	Minimization of Dependencies
	Timed Runs

	Single Stellar Populations
	Stellar Lifetimes
	The Cumulative Return Fraction
	The Main Sequence Mass Fraction
	Enrichment from Single Stellar Populations

	The Gas Supply
	Inflows, Star Formation, and Efficiency
	Outflows
	Recycling

	Enrichment
	The Enrichment Equation
	Core Collapse Supernovae
	Type Ia Supernovae
	Asymptotic Giant Branch Stars
	Subsequent Terms
	Sanity Checks

	Nucleosynthetic Yields
	Core Collapse Supernovae
	Type Ia Supernovae
	Asymptotic Giant Branch Stars

	Scaling of the Total Metallicity
	Stellar Metallicity Distribution Functions

	Comprehensive API Reference
	From the Command Line
	Package Contents
	Provides
	How to Access the Documentation:
	Contents
	Built-In Dataframes
	Utilities
	vice.version
	vice.atomic_number
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code

	vice.primordial
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code

	vice.solar_z
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code

	vice.sources
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code

	vice.stable_isotopes
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code

	vice.cumulative_return_fraction
	Parameters
	Returns
	Notes
	Raises
	Example Code

	vice.main_sequence_mass_fraction
	Parameters
	Returns
	Notes
	Raises
	Example Code

	vice.single_stellar_population
	Parameters
	Returns
	Raises
	Example Code

	vice.dataframe
	Parameters
	Raises
	Allowed Data Types
	Indexing
	Calling
	Functions
	Example Code
	vice.dataframe.keys
	Parameters
	Returns
	Example Code
	vice.dataframe.todict
	Parameters
	Returns
	Example Code
	vice.dataframe.remove
	Parameters
	Raises
	Example Code
	vice.dataframe.filter
	Parameters
	Returns
	Raises
	Example Code
	vice.core.dataframe.builtin_elemental_data
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code
	vice.core.dataframe.elemental_settings
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters
	vice.core.dataframe.evolutionary_settings
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters
	vice.core.dataframe.fromfile
	Attributes
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters
	vice.core.dataframe.fromfile.name
	Example Code
	vice.core.dataframe.fromfile.size
	Example Code
	vice.core.dataframe.noncustomizable
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters
	vice.core.dataframe.history
	Attributes
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters
	vice.core.dataframe.saved_yields
	Allowed Data Types
	Indexing
	Functions
	Example Code
	Parameters

	vice.yields
	Contains
	Notes
	vice.yields.agb
	Contents
	vice.yields.agb.grid
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.yields.ccsne
	Contents
	vice.yields.ccsne.fractional
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.yields.ccsne.settings
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code
	Parameters
	vice.yields.ccsne.settings.keys
	Parameters
	Returns
	Example Code
	vice.yields.ccsne.settings.todict
	Parameters
	Returns
	Example Code
	vice.yields.ccsne.settings.restore_defaults
	Parameters
	Example Code
	vice.yields.ccsne.settings.factory_settings
	Parameters
	Example Code
	vice.yields.ccsne.settings.save_defaults
	Parameters
	Example Code
	vice.yields.ccsne.WW95
	Contents
	vice.yields.ccsne.WW95.set_params
	Parameters
	Raises
	Example Code
	vice.yields.ccsne.CL04
	Contents
	vice.yields.ccsne.CL04.set_params
	Parameters
	Raises
	Example Code
	vice.yields.ccsne.CL13
	Contents
	vice.yields.ccsne.CL13.set_params
	Parameters
	Raises
	Example Code
	vice.yields.ccsne.LC18
	Contents
	vice.yields.ccsne.LC18.set_params
	Parameters
	Raises
	Example Code
	vice.yields.sneia
	Contents
	vice.yields.sneia.single
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.yields.sneia.fractional
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.yields.sneia.settings
	Allowed Data Types
	Indexing
	Functions
	Built-In Instances
	Example Code
	Parameters
	vice.yields.sneia.settings.keys
	Parameters
	Returns
	Example Code
	vice.yields.sneia.settings.todict
	Parameters
	Returns
	Example Code
	vice.yields.sneia.settings.restore_defaults
	Parameters
	Example Code
	vice.yields.sneia.settings.factory_settings
	Parameters
	Example Code
	vice.yields.sneia.settings.save_defaults
	Parameters
	Example Code
	vice.yields.sneia.iwamoto99
	Contents
	vice.yields.sneia.iwamoto99.set_params
	Parameters
	Raises
	Example Code
	vice.yields.sneia.seitenzahl13
	Contents
	vice.yields.sneia.seitenzahl13.set_params
	Parameters
	Raises
	Example Code
	vice.yields.presets
	Contents
	vice.yields.presets.save
	Parameters
	Raises
	Example Code
	vice.yields.presets.remove
	Parameters
	Raises
	Example Code
	vice.yields.presets.JW20
	CCSNe
	SNe Ia
	AGB
	Other Contents
	vice.yields.presets.JW20.alt_cc_sr_linear
	Parameters
	Returns
	Notes
	Example Code
	vice.yields.presets.JW20.alt_cc_sr_limitexp
	Parameters
	Returns
	Notes
	Example Code

	vice.elements
	Contents
	vice.elements.element
	Parameters
	Attributes
	Example Code
	vice.elements.element.symbol
	Example Code
	vice.elements.element.name
	Example Code
	vice.elements.element.yields
	Attributes
	Example Code
	vice.elements.element.atomic_number
	vice.elements.element.primordial
	Example Code
	vice.elements.element.solar_z
	Example Code
	vice.elements.element.sources
	Example Code
	vice.elements.element.stable_isotopes
	Example Code
	vice.elements.yields
	Parameters
	Attributes
	vice.elements.yields.ccsne
	Example Code
	vice.elements.yields.sneia
	Example Code

	vice.imf
	Contains
	vice.imf.kroupa
	Parameters
	Returns
	Raises
	Example Code
	vice.imf.salpeter
	Parameters
	Returns
	Raises
	Example Code

	vice.singlezone
	Parameters
	Attributes
	Functions
	Example Code
	vice.singlezone.run
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.singlezone.from_output
	Parameters
	Returns
	Raises
	Notes
	Example Code
	vice.singlezone.name
	Example Code
	vice.singlezone.func
	Example Code
	vice.singlezone.mode
	Example Code
	vice.singlezone.verbose
	Example Code
	vice.singlezone.elements
	Example Code
	vice.singlezone.IMF
	Example Code
	vice.singlezone.eta
	Example Code
	vice.singlezone.enhancement
	Example Code
	vice.singlezone.Zin
	Example Code
	vice.singlezone.recycling
	Example Code
	vice.singlezone.bins
	Example Code
	vice.singlezone.delay
	vice.singlezone.RIa
	Example Code
	vice.singlezone.Mg0
	Example Code
	vice.singlezone.smoothing
	Example Code
	vice.singlezone.tau_ia
	Example Code
	vice.singlezone.tau_star
	Example Code
	vice.singlezone.dt
	Example Code
	vice.singlezone.schmidt
	Example Code
	vice.singlezone.schmidt_index
	Example Code
	vice.singlezone.MgSchmidt
	Example Code
	vice.singlezone.m_upper
	Example Code
	vice.singlezone.m_lower
	Example Code
	vice.singlezone.postMS
	Example Code
	vice.singlezone.Z_solar
	Example Code
	vice.singlezone.agb_model
	Example Code

	vice.history
	Parameters
	Returns
	Raises
	Example Code

	vice.mdf
	Parameters
	Returns
	Raises
	Notes
	Example Code

	vice.output
	Parameters
	Attributes
	Functions
	Example Code
	vice.output.name
	Example Code
	vice.output.elements
	Example Code
	vice.output.history
	Example Code
	vice.output.mdf
	Example Code
	vice.output.ccsne_yields
	Example Code
	vice.output.sneia_yields
	Example Code
	vice.output.show
	Parameters
	Raises
	Notes
	Example Code
	vice.output.zip
	Parameters
	Raises
	Example Code
	vice.output.unzip
	Parameters
	Raises
	Example Code

	vice.mirror
	Parameters
	Returns
	Raises
	Example Code

	vice.ScienceWarning
	vice.VisibleRuntimeWarning
	vice.VisibleDeprecationWarning

	Developer’s Documentation
	License
	Citing VICE
	Contributors
	James W. Johnson
	David H. Weinberg

	Acknowledgements
	Submitting a Bug Report
	Contributing to VICE
	Building a New Extension
	Documenting Changes
	Submitting a Contribution

